

<u> </u>	073
(ACCESSION NUMBER)	(THRU)
182	
(PAGES)	(CODE)
CR-65218	49
(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

GPO PRICE \$ _____

Hard copy (HC) 5.00

Microfiche (MF) 1.25

ff 653 July 65

SOLAR ACTIVITY CATALOGUE
VOLUME 2
CATALOGUE OF SOLAR ACTIVITY DURING 1957

BY

FRED C. JONAH
LTV ASTRONAUTICS DIVISION
HELEN DODSON-PRINCE

AND E. RUTH HEDEMAN McMATH-HULBERT OBSERVATORY
OF THE UNIVERSITY OF MICHIGAN

Report No. 00.538

6 January 1965

Prepared under Contract NAS 9-2469 with LTV Astronautics Division

		TABLE OF CONTENTS	
			Page
INTRO	ODUC	CTION	2.1
GENE	RAL	DISCUSSION	
	ı.	Major Solar Flares During 1957	2.2
	2.	Sunspots During 1957	2.3
	3.	Important Plage Regions During 1957	2.4
	4.	Important Radio Emissions from the Sun During 1957	2.6
	5•	Geomagnetic Storms During 1957	2.8
	6.	Solar Terrestrial Effects During 1957	2.8
	7.	Balloon Flights	2.9
	8.	Chronological Catalogue of Major Solar Events During 1957	2.9
		urces and References for 1957 Solar Activity calogue	2.11
2 . I		CATALOGUE OF MAJOR SOLAR FLARES 1957	
		Description of Table 2.I	2.I-i
		Catalogue - Table 2.I	2 .I-1
		IAU Major Flares Reduced to Importance ≤ 2 in the McMath Working List - Table IA	2 .1- 3
		Flares Reported by Only One Observatory, IAU Importance 2+ - Table IB	2 .I -3
		Importance 2+ Flares Not Listed as Major Flares - Table IC	2 .1- 3
2 .II		CATALOGUE OF IMPORTANT SUNSPOT GROUPS 1957	
		Description of Table 2.II	2.II-i
		Catalogue Table 2.II	2.II-1
		Zurich Classification of Sunspots	2 .II- 9
		Mt. Wilson Magnetic Classification of Sunspots	2 .II- 9

		Page
2 .III	CATALOGUE OF PLAGE DATA FOR 1957	
	Description of Table 2.III	2.III-i
	Catalogue Table 2.III	2.III-1
2 .IV	CATALOGUE OF IMPORTANT RADIO EMISSIONS FROM THE SUN DURING 1957	
	Description of Table 2.IV	2. IV- i
	Classification of Single-Frequency Solar Radio Bursts and Enhancements	2.IV-iv
	Table 2.IV-i Solar Radio Observatories, with Symbols, frequencies, and normal operating times during 1957	2. IV-v
	Figure 2.IV-1 - Solar Radio Observatories - Normal Observing Times During the First Quarter, 1957	2.IV-vi
	Figure 2.IV-2 - Solar Radio Observatories - Normal Observing Times During the Fourth Quarter, 1957	2.IV-vii
2 .V	CATALOGUE OF GEOMAGNETIC STORMS DURING 1957	
	Description of Table 2.V	3. V- i
	Catalogue Table 2.V	3.V-1
	Major Geomagnetic Storms During 1957 (Table V-A)	3.V-4
2 .VI	CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 1957	
	Description of Table 2.VI	2. VI- i
	Catalogue - Table 2.VI	2.VI-1
2 .VII	CATALOGUE OF IMPORTANT BALLOON FLIGHTS DURING 1957	
	Description of Table 2.VII	2.VII-i
	References for Balloon Flight Data	2.VII-iii
	Catalogue - Table 2.VII	2. VII- 1
2.VIII	CHRONOLOGICAL CATALOGUE MAJOR SOLAR EVENTS 1957	
	Description of Table 2.VIII	2.VIII-i
	Catalogue - Table 2.VIII	2. VIII- 1

CATALOGUE OF SOLAR ACTIVITY FOR THE YEAR 1957

INTRODUCTION

The data compiled in this volume of the catalogue covers the Greenwich year 1957. This covers synodic rotations of the sun 1383 through 1394; and parts of rotation 1382 which commenced on December 27.07, 1956, and rotation 1395 which started on December 16.63, 1957.

The solar activity data have been arranged in eight tables, or catalogues:

- I. Catalogue of Major Solar Flares and Related Terrestrial Effects
- II. Catalogue of Important Sunspot Groups
- III. Catalogue of Important Plage Regions
- IV. Catalogue of Outstanding Solar Radio Emissions
- V. Catalogue of Geomagnetic Storms
- VI. Catalogue of Important Solar-Terrestrial Effects
- VII. Catalogue of Balloon Flights
- VIII. Chronological Catalogue of Major Solar Events

There is a considerable amount of duplication between the different catalogues. This has been done to keep cross references at a minimum without making the number of columns unwieldy. Each of these catalogues is described in detail in the subsequent sections and in the description of the tables. The data have been obtained from many sources. These are listed in Table 2.7, of references, pages 2.11 - 2.13.

This work has been carried out at LTV Astronautics Division under NASA Contract NAS 9-2469. Dr. Helen Dodson-Prince and Miss E. Ruth Hedeman prepared the data for the Chronological Catalogue (Table VIII). In addition, they have made valuable contributions to the other tables through discussions and data contributions. Their work was supported by the Office of Naval Research.

We wish to express our appreciation to Dr. Howard for use of the Mt. Wilson daily work sheets of sunspot magnetic classifications. Miss Virginia Lincoln at the National Bureau of Standards, Central Radio Propogation Laboratory, has made valuable suggestions and data at the World Data Center A (airglow and ionospheric) available. Many of the authors listed in the reference table have generously supplied reprints of their papers and in some cases have made unpublished data available. Other scientists throughout the world have made valuable contributions through discussions and helpful suggestions during the period when many of the data were being obtained and the idea of a solar activity catalogue was generated.

1. Major Solar Flares During 1957

The IAU Quarterly Bulletin (reference 63) lists 3831 solar flares with importance ranging from 1 to 3+. Only 1374 of these flares were reported during the first six months of the year (before the start of the IGY) and 2457 during the second six months. During the similar periods of 1958, 2038 and 2232 flares were reported respectively. It is important to note that during the first six months of 1957 there was no flare patrol of the sun 31.1 per cent of the time while during the second six months the hours of no patrol had decreased to approximately 4.5 per cent of the time. During the corresponding periods of 1958 the hours of no patrol were 4.6 and 4.5 per cent of the time, respectively.

Month	Patrol b	y Months Percent		Number	Major	Flares IAU	McM
Month	Hours	Complete	2+	3	3+	2+,3,3+	2+,3,3+
Jan.	401.5	55•3	0	8	3	11	9
Feb.	402.5	59 • 9	Ö	2	0	2	ź
Mar.	482.0	64.7	ĭ	ī	ō	2	ı
Apr.	473.0	65.6	ō	6	0	6	5
May	577.0	77.5	0	0	0	0	0
June	650.5	90•3	2	7	0	9	3
Total 1st 6 mos.	2986.5	68.9	3	24	3	30	20
July Aug. Sept. Oct. Nov. Dec.	730.0 732.0 710.0 657.0 669.0 661.0	98.1 98.3 98.6 88.3 92.3 88.8	4 4 5 1 2 4	6 5 17 7 5	1 2 2 1 2	11 11 24 9 9	6 7 14 4 2
Total 2nd 6 mos.	4159.0	95•5	20	47	8	75	38
Total 1957	7145.5	82.2	23	71	11	105	58

TABLE 2.1
Flare Patrol Hours and Major Flares During 1957

The number of nours and per cent of total time of flare patrol for each month, together with the number of major flares reported in the IAU Bulletin (reference 63), is given in Table 2.1. The McMath-Hulbert working list of flares (reference 12, second six months, and unpublished data for the first six months) reduced 10 of the IAU major flares reported during the first six months and 37 reported during the second six months to minor flare importance. The last column of Table 2.1 shows the number of 2+, 3, and 3+ flares in the McMath working list by months. In addition, the working list gives three flares with importance 2+, reported by a single observatory, two in July and one in November. These did not meet the catalogue requirement for major flare status, but are shown in Table 2.IB. The flares during the year 1957 that were reduced to minor flare status are listed in Table 2.IA.

2. Sunspots During 1957

Solar activity as indicated by the relative number of sunspot groups reached an all time high during 1957, with the highest relative sunspot number on September 21, of 334 and a monthly mean of 253.8 for October. Mt. Wilson observed 855 sunspot groups with a central meridian passage during 1957; 80 of these sunspot groups crossed the central meridian during October the month of solar maximum. The Royal Greenwich Observatory observed 624 sunspot groups that lasted for two or more days. In addition, they reported 164 groups that were seen on one day only for a total of 788 spot groups (reference 61).

Our catalogue of <u>Important Sunspot Groups During 1957</u> lists 120 groups. This includes: 109 spot groups that during disk passage had a maximum area greater than 500 millionths of the visible solar hemisphere as reported in reference 61. Sixty-nine of these large spot groups did not produce a single major flare during disk passage. The remaining 40 large spots produced 89 of the major flares as shown in Table 2.2.

Number of	Number of	Total Number
Large Spot Groups	Major Flares Each	of Major Flares
69	0	0
20	1	20
9	2	18
2	3	6
3	4	12
3	5	15
3	6	18
109		89

TABLE 2.2
Major Flare Distribution Among Large Sunspot Groups

Nine small spot groups produced one major flare each, one small group produced two major flares, and one produced three. It was not possible to associate sunspot groups with the two remaining major flares.

Twenty spot groups were given an average magnetic classification of γ or $\beta\gamma$ during disk passage by the Mt. Wilson Solar Observatory (reference 66, denoted by M in our catalogue). Of these, 19 also had a maximum area greater than 500 millionths during disk passage. Six of the L.M. spots did not produce a major flare during disk passage. The remaining 13 produced 42 major flares as shown in Table 2.3.

L.M. Spot	Number of	Total Number
Groups	Major Flares Each	of Major Flares
6	0	0
4	1	4
2	2	4
1	3	3
1	4	14
3	5	15
ž	6	12
19		42

TABLE 2.3

Major Flare Distribution

Among Large Magnetically Complex Sunspot Groups

One spot group in our catalogue classified as a γ spot had a maximum area of 427 millionths (a mean area of 306) and did not produce a major flare.

Important Plage Regions During 1957

Our catalogue of 77 important plage regions includes:

- 3.1 All plages that produced one or more major solar flares (F)
- 3.2 Plages that had a central meridian area of 10,000 millionths of the visible solar hemisphere (L)
- 3.3 Plages that during disk passage had an average brightness of 3.5 or greater (B)
- 3.4 Plages that produced 30 or more flares of importance 1 or greater during disk passage (N)

We find that 104 of the major flares were associated with 49 plage regions as shown in Table 2.4. It was not possible to associate one major flare (No. 34) with a plage region. This flare reported by Moscow with importance 3 at S.10, E.43 is not included in the McMath-Hulbert working list.

Number of	Number of	Total Number
Plage Regions	Major Flares Each	of Major Flares
28	1	28
8	2	16
5	3	15
2	4	8
2	5	10
3	6	18
1	9	9
49		104

TABLE 2.4
Major Flare Distribution
Among Plage Regions

We find 8 plages that satisfy the L, B, N conditions. Three of these plages did not produce major flares, the other 5 produced 22. Thirty-five plages produced 30 or more flares of importance equal to or greater than one, and all but 7 produced at least one major flare. In fact, the 28 flare productive plages produced 80 of the 105 major flares.

Age in Rotations	1	2	3	4	5	6	7	8	9	Total
No Plage Regions	15	11	10	6	1	3	2	0	1	49
Major Flares	23	28	29	9	6	6	2	0	1	104
All Flares	384	432	421	323	83	73	55	0	24	1795

TABLE 2.5
Flares Associated with Plage Regions

We find that plages in the first, second and third rotations produced a total of 80 of the major flares almost equally divided. These 49 plage regions produced nearly 44% of all flares reported during 1957 (1795 of the 3831 reported).

4. Important Radio Emissions from the Sun During 1957

We have limited this portion of the catalogue to spectral observations Type II (slow drift) and Type IV (broad band continuum) and radio emissions at discrete frequencies between 167 Mc/s and 9400 Mc/s.

During 1957 the Harvard Radio Astronomy Station, at Fort Davis, Texas, operated on a sweep frequency range from 100-580 Mc/s. The normal operating times were approximately 1345-2400 UT during the winter months and 1230-0145 UT during the summer (reference 38). During 1957 the spectral observations of the solar radio emissions with the Dapto radio spectrograph (CSIRO, Sydney, Australia) operated in the frequency range 40-210 Mc/s. The normal observing times were approximately 2300-0800 during the winter months and 2200-0700 in the summer. With only the Harvard and Sydney stations patrolling the sun, we have a period between 0800 and approximately 1400 during the winter months and 0700 and 1230 in the summer with no spectral observations.

In order to fill this approximate six hour gap, we have included Type IV emissions derived from single frequency observations by a number of scientists for the complete 24 hour Greenwich day. We find a total of eleven Type IV emissions derived for the six-hour period and 41 for the normal observing times of the two sweep frequencies stations. During that same period Harvard (reference 38) and Sydney observed only 23 emissions of Type IV. A summary is shown in Table 2.6 where the distribution of the Type II and Type IV spectral emissions are given for the Greenwich day in three-hour intervals.

	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	Total
Type II	11	13	2	0	7	10	10	10	63
Type IV Har.& Syd. Type IV	3	3	0	0	5	4	6	2	23
Derived	8	3	9	6	10	6	6	4	52
All Type IV	11	6	9	6	1 5	10	12	6	75
Type IV Har.or Syd. & derived	2	1	0	0	3	3	6	2	17
Normal Obs. Time		Syd				H	ar		

TABLE 2.6
Distribution of Type II and Type IV
Spectral Emissions During the Greenwich Day

The first row indicated as Type IV gives the number of Type IV emissions reported by the Harvard station and/or Sydney. The second row gives the number of Type IV's not observed on sweep frequency but derived from discrete frequency data; the third row gives the number of all Type IV's. The last row gives the number of Type IV's observed on sweep frequency and also derived from discrete frequency data.

It is interesting to note that of the 52 cases of derived Type IV's 28 of them occurred when neither the Harvard nor the Sydney station was observing the sun. Eleven of these occurred in the normal non-observing time between approximately 0700 and 1300.

A total of 63 Type II (slow drive) bursts were recorded at either Harvard or Sydney radio stations. Their distribution in the three-hour intervals is shown on the first line of Table 2.6.

Data for the fixed-frequency observations have been obtained from the IAU Quarterly Bulletins of Solar Activity (reference 63) and the Tokyo Astronomical Observatory Bulletin (reference 68). The IAU Bulletin did not report the time of maximum flux until the start of the IGY, July 1957.

The radio patrol of the sun was very incomplete during the first quarter of 1957, as shown on Figure 2.IV-1 and on Table 2.IV-i. Observations were made by ten observatories at a total of 15 frequencies, ranging from 9400 Mc/s to 81 Mc/s. With the exception of 200 Mc/s and 600 Mc/s, the sun was under observation only about 25% of the time at any given frequency. The patrol at 200 and 600 Mc/s covered approximately 58% of the Greenwich day. There was a slight improvement during the second quarter as shown on Table 2.IV-i. With the start of the IGY in July 1957 the number of solar radio observatories was increased to 24 observing at a total of 31 frequencies ranging from 9500 Mc/s to 67 Mc/s, with nearly complete coverage of the Greenwich day at several frequencies. This is shown on Fig.2.IV-2 for the fourth quarter. The coverage for the third quarter is essentially the same as the fourth quarter as shown in Table 2.IV-ii.

5. Geomagnetic Storm During 1957

A comprehensive search of the literature fails to reveal a universal list of geomagnetic storms or agreement on starting times. In the case of moderately severe and severe sudden commencement storms the variation of starting times reported by the magnetic observatories seldom differ by more than a few minutes; on the other hand, some observatories will report a storm duration of two or more days, while others may report two or more storms during the period. In the case of geomagnetic storms with a gradual beginning the start times may differ by several hours. The catalogue of geomagnetic storms has been limited to those storms that reached a planetary three-hour index Kp of 5 or greater. We have included, in some cases, a probable solar flare association. In each of these cases the storm-flare association has been given in the scientific literature as indicated in the reference or source column of the table.

6. Solar-Terrestrial Effects During 1957

This portion of the catalogue is limited to shortwave radio fadeouts (SWF) selected geomagnetic storms, solar flare effects (SFE), polar-cap absorptions, and Forbush decreases.

6.1 Short Wave Radio Fadeouts

In the case of the SWF we have included those of importance 3 or greater that lasted for 30 minutes or more, and those that occurred at the time of a major flare, irrespective of their importance or duration.

6.2 Geomagnetic Storms

In general, the geomagnetic storms listed in this portion of the catalogue are limited to those that have been classified as moderately severe ($K_p = 6$ or 7) and severe ($K_p = 8$ or 9). A few moderate storms ($K_p = 5$) have been included if in the literature they have been associated with a flare (irrespective of the flare importance) or a polar-cap absorption.

6.3 Solar Flare Effects

Solar flare effects (SFE) (magnetic crochets) have been taken from reference 4. They are limited to those that were unmistakable or definitely SFE's.

6.4 Polar-Cap Absorptions

A number of papers in the scientific literature have discussed polar-cap absorption and their correlation with solar flares, solar radio emissions, geomagnetic storm and other terrestrial effects. There is, in general, good agreement between the different investigators, although the choice of the flare responsible for the PCA is, in some cases, not unique. These are cases when two or more flares of importance 2 or greater take place within the acceptable time limit.

6.5 Forbush Decreases

The list of Forbush Decreases given in the catalogue is probably the most questionable of all of the data. A number of Japanese physicists have published lists of cosmic ray storms (Forbush decreases) that they have associated with geomagnetic storms (references 27, 33). These cosmic ray storms have been estimated from a number of high latitude neutron monitor stations, but starting times have not been given except for a tin hours from the start of the sudden commencement to the start of the main phase decrease.

7. Catalogue of Balloon Flights

One hundred forty balloon flights were reported to the IGY World Data Center A for cosmic rays for the first six months of the IGY (second six months of 1957). Fifty-four of these flights were made in the USSR and 86 by free world scientists. Thirty-four of the USSR flights and 72 of the free world flights were made within four days after a major solar. In fact, there was at least one balloon flight at altitude, and in some cases several within four days after all but five (Flares No. 40, 77, 86, 90, and 91) of the major flares during the second six months of 1957. In several cases balloons were at altitude at the time of the major flare, or were launched within 24 hours after the start of the flare. A search of the literature reveals only two balloon flights within four days of a major flare (flares number 11, and 22) during the first six months of 1957.

8. Chronological Catalogue of Major Solar Events During 1957

This table summarized many of the data contained in Tables I through VI of the catalogue. However, Tables I through VI give many events and more detailed data than was possible in Table VIII. In Table VIII flares were limited to those of importance 3 or 3+ in the McMath-Hulbert working list (references 12 and unpublished data) and those of lower importance that were unquestionably associated with a flare effect.

The criteria for inclusion as a major event (indicated by an asterisk) are as follow:

- 8.1 Flares of importance 3 or 3+ in the McMath-Hulbert working list (reference 9).
- 8.2 Short-wave fades of importance 3 or 3+ that lasted for 30 minutes or more.

- 8.3 10 cm. radio emissions with a peak flux of 500 or more (units of $10-22 \text{ Wm}^{-2} (\text{c/s})-1$)
- 8.4 <u>Plage regions</u> that were the sources of 30 or more flares (of all importances) during disk passage.
- 8.5 Sunspot groups that had a mean area of 1000 millionth of the visible solar hemisphere, based on Mt. Wilson data, or had a γ or $\beta\gamma$ magnetic classification during disk passage.
- 8.6 Dynamic spectral emissions includes outstanding Type I and Type III bursts reported in the IAU Bulletin, and all Type II and Type IV bursts included in the Maxwell, Hughes and Thompson Catalogue of Type II and Type IV Solar Radio Bursts (reference 38).
- 8.7 Polar-cap absorptions included in Bailey's catalogue (reference 2) and those weak events generally reported in the literature from Riometer recordings.

In addition to these major events, the catalogue includes:

- $8.8 \quad 200 \text{ Mc/s radio emissions}$ that occurred at the time of other solar events.
- 8.9 Radio emissions at other frequencies unquestionably associated with other solar events.
- 8.10 Geomagnetic storms
- 8.11 All events of lower importance that are definitely or reasonably associated with one or more of the major events.
- 8.12 Notes and comments concerning some of the solar-terrestrial events are given as footnotes on the appropriate pages.

TABLE 2.7 SOURCES AND REFERENCES SOLAR ACTIVITY CATALOGUE 1957

						8	SOLAR PHENOMENA	MENA	RA	RADIO EMISSIONS	NS		SOLAR-7	TERRESTE	SOLAR-TERRESTRIAL EFFECTS	CTS	
Ref. No.	Author	Publication	Vol.	Year	Pages	Plage	Sun Spots	Flares	ı	2	Single Freq.	S.W.F.	P.C.A. F	Forbush	Geomag. Storms	Κp	S.F.E
-	Afanas'yeva	Geomag. Aeronomy	2	1962	426 - 431										8		
61	Bailey	Planet, Space Sci.	12	1964	495 - 541			-					⊗		i		
₆	Bailey	J. Phys. Soc. Japan Supp. Al	17	1962	106 - 112			×				×	⊗				
4	Bartels, Roman, & Veldkamp	IAGA Bulletin	12.i	1961	134 - 136 210 - 217 203 - 204										⊗	\otimes	\otimes
vs .	Bartels & Veldkamp	J. Geophys, Res.	63	1957 1958	475, 629 243, 547										$\otimes \otimes$	×	×
9	Bartels	IAGA Bulletin	18	1962	107 - 112 178 - 179										⊗	\otimes	
7	Besprozvannaya	J. Phys. Soc. Japan Supp. AI	17	1962	146 - 149								⊗				
•	Boorman, et. al.	M.N. Royal Astron. Soc.	123	1961	96 - 18			×	×								
"	Collins, Jelly & Matthews	Can, J. Phys.	39	1961	35 - 52						,		⊗				
9	De Feiter, et. al.	Planet, Space Sci.	2	1961	223 - 227	<u>-</u> .		*							⊗	×	
=	Dodson & Hedeman	J. Geophys. Res.	9	1960	123 - 131			8									
12	Dodson & Hedeman	I.G.Y. Solar Act Report	R 12	1960	_			⊗									-
13	Dodson & Hedeman	Plage Catalogue	To be published	lished		⊗	×				-						
14,	Dodson & Hedeman	Astrophys. J.	128	1958	636 - 645			×									⊗
15.	Dodson & Hedeman	Planet. Space Sci.	21	1964	393 - 418			×	×	×		\otimes			×		
16.	Dvoryashin, et. al.	Soviet Astron. A.J.	S	1961	311 - 325			×		×			×		\otimes		
17.	Eleman	Arkiv Astronomi	က	1962	37 - 49			×									⊗
18.	Ellison, Ed.	Annals, I.G.Y.	23	1962	266 pages		⊗										
19.	Ellison, Ed.	Annals, I.G.Y.	21, 22	1961		8	⊗	8									
20.	Fedchenko	Geomag., Aeronomy	-	1961	310 - 316									⊗			
21.	Finch & Laurie	The Observatory	82	1958	40 - 42	_	×								⊗		
22.	HaKura & Goh	J. Radio Res. Lab. Japan	9	1959	633 - 650					×	×		×		⊗		
23.	Haurwitz	J. Geophys. Res.	67	1962	2919 - 2982			×							⊗		
24.	Jelly & Collins	Can. J. Phys.	0‡	1962	706 - 718								⊗				
25.	Jenkins & Paghis	Can. J. Phys.	1	1963	1056 - 1075			×					8				
26.	Kahle	U. Alaska Geophys. Report	R129	1962	68 pages			×	×	×		×	⊗		×		
27.	Kamiya	J. Geomag, Geoel. Japan	13	1961	33 - 41			×		⊗				×			
28.	Knapp	J. Geophys. F.es.	99	1961	2053 - 2085										⊗		
29.	Khocholava	Geomag, Aeronomy	8	1962	96 - 06	×		×		×			*	×	×		
30.	Khocholava	Geomag, Aeronomy	က	1963	735 - 740	×		×		×			⊗	×	×		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															

						NOS	SOLAR PHENOMENA	NA	RADIC	RADIO EMISSIONS	Ş		SOLAR-	TERRESTR	SOLAR-TERRESTRIAL EFFECTS	T.S	
Ref. No.	Author	Publication	Vol.	Year	Pages	Plage	Sun Spots	Flares	п	IV	Single Freq.	S.W.F. P	P.C.A. F	Forbush Decrease	Geomag. Storms	Кp	S.F.E.
-	1 sinhach	ii Alaska Geonbys, Rep.	R127	1962	230 pages								8				
32.	Lockwood	J. Geophys. Res.	65	1960	3859 - 3880			×						8			
33.	Maeda, et. al.	Ann. Geophys.	18	1962	305 - 333			×			×	×		×	8		-
34.	Malitson	NASA - TR	R169	1963	109 - 117			×		×			⊗		×		_
35.	Matres & Pick	Ann. Astrophys.	25	1962	293 - 300		×	8									
36.	Matsushita	J. Geophys. Res.	29	1962	3753 - 3771										8		
37.	Maxwell, Thompson.	Planet, Space Sci.	-	1959	- 325 - 332				\otimes						×		
38.	Maxwell, Hughes. & Thompson	J. Geophys, Res.	89	1963	1347 - 1354			×	\otimes	⊗							
39.	McLean	Australian J. Phys.	12	1959	404 - 417					\otimes						×	
40.	Noves	J. Phys. Soc. Japan, Supp. A2	17	1962	275 - 280	×	×	×					⊗				
4	Obayashi & Hakura	J. Geophys. Res.	65	1960	3143 - 3148			×		×			\otimes		×		
- 42	Obayashi & Hakura	Rep. Ionosphere, Space. Res. Japan	14	1960	1 - 40					×			×		⊗		
43.	Ohman, Ed.	Ann. I.G.Y.	ß	1958	249 - 300	×	×	×	×	×	×						
44.	Pick-Gutmann	Ann. Astrophys.	24	1961	183 - 210					⊗	×						
45.	Piggott & Shapley	Antartic Res. Geophys.	7	1962	111 - 126								⊗		(
46.	Pisharoty & Srivastava	J. Geophys. Res.	67	1962	2189 - 2192	-					-				⊗		
47.	Reid & Leinbach	J. Geophys. Res.	64	1959	1801 - 1805			×					⊗		(-
48.	Sano	J. Geomag, Geoel, Japan	14	1962	1 - 15								(⊛		
49.	Sarabhai & Pai	J. Phys. Soc. Japan, Supp. A2	17	1962	286 - 289			× (⊗		× ((
50.	Shapley & Lincoln Compil.	Ann. L.G.Y. Solar Activity	16	1962	1 - 127			8	×	×	×	× _		×	⊗	$\hat{\mathbf{x}}$	
51.	Simpson, Ed.	Ann. I.G.Y. Cosmic-Rays	27, 28												(
52.	Sinno	J. Geomag. Geoel, Japan	13	1961	1 - 10			×		× (×		®		
53.	Thompson & Maxwell	Planet Space Sci.	2	1960	104 - 109			×		\otimes			×				
	Waldmeier	Pub. Eigeniss, Sternwarte Zurich	11	19	31 - 59		\otimes										
55.	Warwick, C.	I.G.Y. Solar Activity Rep.	R 17	1962				8					(
56.		J. Geophys. Res.	67	1962	1312 - 1332			×	(×		\otimes				
57.	Weiss	Australian J. Phys.	16	1963	240 - 271			×	⊗								
58.		Atomic Energy of Canada. Deep River	Weekly Neutro	Weekly Reports Neutron Monitor										×			

2.13

TABLE 2.7 1957 (CONTINUED)

П	ы	Γ											
	S.F.E.												
ECTS	Κρ	8											
SOLAR-TERRESTRIAL EFFECTS	Geomag. Storms	⊛			×								
-TERREST	Forbush Decrease												
SOLAR	P.C.A.					(⊛						
	S.W.F. F	⊗											
ONS	Single Freq.	®			- (8					8		
RADIO EMISSIONS	£		8		(8							
RA	'H		⊗		(⊛							
ΑN	Flares	⊗			×						8		
SOLAR PHENOMENA	Sun Spots			8			(⊛	⊗ ⊗	ı	⊗	×	
SOLAR	Plage S	8									⊗		
	Pages			C89 - C184					272, 360, 471, 580 116, 214	320, 480, 634 249			
	Year			1961				1957	1957			1957	
		150 - 161				117 - 120	.	ä				7	
	Vol.	150		56		117	1, 2, 3		69 02	63 62			
	Publication	Solar, Geophysical Data Part B - 1957	Spectral Observations	Photoheliographic Results	Weekly Solar Bulletin	Solar Activity	Aurora, Instrumental	Microfilm	P. Astron. Soc. Pacific	J. Geophys. Res.	Quarterly Solar Bulletin	Daily Sunspot Bulletin	
H		15 A	· Ø	Д	3		<u> </u>	3	<u>ρ</u> ί	- -	<u>•</u>	ă	
	Author	CRPL	CSTRO	Greenwich Obs.	High Altitude Obs.	IAU Quarterly Bulletin	I.G.Y. WDC-A	Mt. Wilson Obs.	Mt. Wilson Sunspot Mag. Class	Principal Magnetic Storms	Tokyo Astronomical Obs.	U.S. Naval Obs.	
П	Ref. No.	.98	.09	61.	62.	63.	ž	65.	.99	67.	8	9	

TABLE I. CATALOGUE OF MAJOR SOLAR FLARES DURING 1957

The meaning of the various columns and a description of the data contained in Table I - Catalogue of Major Solar Flares, are given below.

A major flare is defined as a flare which has been reported with importance 3 or 3+ by at least one solar observatory, or with importance 2+ by at least two observatories and published in the Quarterly Bulletin of the IAU (reference 63).

- Column 1 Major Flare Serial Number.
- Column 2 Solar Event Serial Number. This is the event number assigned to the solar or terrestrial event in the Chronological Catalogue, Table VIII.
- Column 3 Greenwich Date of the Flare.
- Column 4 Beginning of the Flare U.T. This is the earliest time reported in the IAU Bulletin. If the observatory reported that the start of the flare was observed, the fact is indicated by underlining the start time.
- Column 5 End Time U.T. This is the latest reported end time in the IAU Bulletin. If the end of the flare was observed, the end time is underlined.
- Column 6 Time of Maximum. Since different observatories often report different maximum times for the same flare, the time (or in a few cases, times) entered in this column has been taken from the McMath-Hulbert working list of flares for the second six months and unpublished data for the first six months. In general, the tabulated time is the arithmetic mean of the reported times of maximum for all observations that covered the principal maximum of the flare. If a second time is given, there is an indication that a secondary maximum may have occurred as indicated by two well developed phases or that several observers reported them as two separate flares.
- Column 7 Position. The heliographic position given in the catalogue are arithmetic means of the values reported in the IAU Bulletin. A reported value is excluded in deriving the mean if the value deviates by a large amount from the other reported positions.
- Column 8 Plage Number. This is the serial number of the McMath plage in which the flare occurred.

- Column 9 Active Region. This is the serial number assigned to active regions by the Meudon Observatory in the IAU Quarterly Bulletin. The numbering starts with one at the beginning of each quarter. It will be noted that there is not always a one to one correspondence between the plage and the active region, a plage may cover two or more regions.
- Column 10 Mt. Wilson Serial Number of Sunspot Group Where the Flare Occurred. Occasionally a flare occurs between two groups and two spot numbers are recorded.
- Column 11 Greenwich Serial Number of the Spot Group.
- Column 12 Flare Importance. This is the maximum importance reported for the flare in the IAU Quarterly Bulletin.
- Column 13 No. Rep./No. Max. This column gives the number of observatories reporting the flare in the IAU Bulletin and the number that reported it with the maximum importance.

 Occasionally an observer reports the same flare two or more times. These separate reports are all considered in the selection of the start, end, and maximum times use in Columns 4, 5, and 6. But only once for the number of reports. The number of observers reporting the flare with the importance shown in Column 12 is indicated by the second number in this column. (See Note Page 2.I-iv.)
- Column 14 This column gives the importance assigned to the flare in the McMath-Hulbert Observatory working list of flares (reference 12), for the second six months and unpublished data for the first six months. The method that was used to arrive at the value is described in that reference.

FLARE AREA SQUARE DEGREES

Reported areas of flares, in square degrees, frequently vary over a wide range. These differences are due to the methods used by the observer, different times at which the estimate, or measurement was made, and other factors. In order to give the tabulation of this parameter as much value as possible, we have given:

- Column 15 The range of areas reported in the IAU Quarterly Bulletin: Smallest area and largest area.
- Column 16 Number of Observatories Reporting an Area
- Column 17 The Arithmetic Mean of the Reported Values

RELATED FLARE ACTIVITY

- Column 18 Other Flares. This column lists the number of minor and major flares associated with the active region during disk passage (IAU active region reference 63) before and after the major flare.
- Column 19 This column gives the heliographic longitude (or cental meridian distance) of the first flare associated with the region and the importance of the first flare. For example: E90/2 indicates that the first flare occurred at E90, and at least one observatory reported it with an importance 2.
- Column 20 Short Wave Radio Fadeouts (S.W.F.). Short wave radio fadeouts associated with major flares are listed with the following notation: Beginning/Duration in munutes/ importance. Complete data for S.W.F.'s of importance ≥3 that lasted 30 minutes or more are given in Table VI, Catalogue of Solar-Terrestrial Effects.
- Column 21 Solar Radio Emissions at 10 cm. Peak flux reported at approximately 10 cm. wave length. (The frequencies may be 2800, 2980, or 3000 Mc/s.) Detailed data for important solar radio emissions are given in Table IV, Catalogue of Solar Radio Emissions. The information given in Columns 21-23 is limited to an indication of the radio activity of the region at the time of the flare.
- Column 22 Peak flux reported at 1.5 m. wave length (200 Mc/s). If the peak flux was reported as greater than the recorded flux, the recorded flux has been underlined. When the flux given in Columns 20 or 21 represents a smoothed flux (peak flux not reported), the value is enclosed in a bracket.
- Column 23 Emissions at Other Wave Lengths. The notation cm. in this column indicates that emissions are reported (and given in Table IV at one or more frequencies greater than 600 Mc/s (except approximately 3000 Mc/s). Similarly, the notation m. indicates that emissions are reported at frequencies less than 600 Mc/s (except 200 Mc/s) and detailed data are given in Table IV.
- Column 24 Dynamic Spectral Emissions. The notation II or IV in this column indicates that emissions of Type II (slow drift), or broad band continuum, Type IV, are reported by either the Sweep Frequency Observatory at Sydney, Australia, or the Harvard College Radio Observatory at Fort Davis, Texas.

If no spectral observations are reported, but a broad band continuum, Type IV, has been derived from discrete frequency observations by one or more of several investigators, the symbol has been enclosed in a bracke - (IV). (Detailed data are given in Table IV.)

SOLAR TERRESTRIAL EFFECTS

- Column 25 Polar-Cap Absorption. Polar-cap absorptions reported within a reasonable time after a major flare (generally between one and seven hours) are listed. The data in this column are limited to: month/Greenwich day/beginning time U.T./absorption in db. Additional data, including references, are given in Table VI, Catalogue of Solar-Terrestrial Effects.
- Column 26 Geomagnetic Storms. Geomagnetic storms with a maximum Kp >5- reported by three or more observatories within a reasonable time after the major flare (generally between twelve and seventy two hours). The data in this column are limited to: Month/Greenwich day/onset time, U.T./type/degree of activity/maximum reported Kp. Additional data, including: references, duration, number of reports, etc. are given in the Catalogue of Geomagnetic Storms, Table V, and the Catalogue of Solar-Terrestrial Effects, Table VI.

NOTE:

Normalized flare data for the period July 1955 through June 1957 have just become available (6 January 1964). The normalized flare importances combined with the previously published data for the IGY2 (July 1957 through December 1958) cover 48 of the 84 months of the 19th Solar Cycle when the sun was reasonably active and most of the major flares were reported.

Since the method used by Warwick (described in detail in (2)) to arrive at a normalized flare importance is different from the method used to derive the McMath-Hulbert working list of flares (reference 12), we feel that both the McMath-Hulbert and the Warwick flare importances will be valuable in the study of flares and flare induced phenomena and have inserted the Warwick importances between Columns 13 and 14 in the Catalogue of Major Flares (Volume 2, Table I) for 1957.

We find three cases where flares reported in the IAU Bulletin, and the McMath-Hulbert working list are recorded as two or more separate flares in the Warwick list as shown below:

	Major Flare	McM	CSW	Im	portanc	е
Date	Serial No.	Serial No.	Serial No.	CSW	McM	IAU
8-28	45	710	1360 1362 1363 1367	3 3 3	3	3+
9-18	70	1068	2191 2192	2 - 3+	3+	3+
11-24	93	1982	4180 4181	3 - 3	3	3+

A comparison of the flare times and heliographic portions is shown on Page 2.I-vi.

⁽¹⁾ Warwick, Constance S., Normalized Solar Flare Data July 1955 through June 1957, IGY Solar Activity Report Series, No. 29, Nov. 1964.

⁽²⁾ Warwick, Constance S., National Bureau of Sciences List of IGY Flares with Normalized Values of Importance and Area, IGY Solar Activity Report Series, No. 17, May 1962.

MAJOR FLARE NO. 45

	Table I	McMath	1	C. S. Warw		
Ser. No.	45	710	1360	1362	1363	1367
Beg.	0810	0913	0810	0915 (0841)	0847	1133 (1110)
End	1404	1404	0839	1059 (1115)	1047	1331 (1345)
Max.	0955	0925 0955	0824	1002	0925	1123
Position	S31	S31 E 3 3	\$30 E 32	S30 E33		S34 E32
	E33	دوء ا	عرت ،	200	- -	-,-

MAJOR FLARE NO. 70

	Table I	МсМа	th	C. S. Wa	
Ser. No.	70	10	68	2191	2192
Beg.	1658	1722	1818	1722 (1658)	1818
End	2110	1818	2110	1843	2029
Max.	1840	1740	1840	1702	1840
Position	N23 E08	N23 E08	N 20 E03	N23 E09	N 20 E 03

MAJOR FLARE NO. 93

	Table I	McMa	th	C. S. Wa	
Ser. No.	93	198	2	4180	4181
Beg.	0848	<u>0848</u>	1100	0848	0900
End	1202	1100	1202	1108	1109
Max.	0911	0911	1109	0911	0912
Position	S14 E37	S14 E47	S12 E55	S14 E37	S11 E38

Table Ii (cont.)

CSW Serial		Beg.	End	Max.				mportan	ıce
No.	Date	UT	UT	UT	Posi	tion	CSW	IAU	McM
2760 3175 3207	0ct. 5 18 19	1253 2357 1916	1256 2550* 2006	1925	N 45 S22 S25	W90 W03 W21	2+ 2+ 2+	2	2 0 1C
4132	<u>Nov.</u>	0055	0105	*	\$2 5	E90	2+		0
5131 5150	Dec. 28 30	<u>2229</u>	2331 0126	2230 0106	N25 N24	W50 W59	3 - 3-	2 2,1	2 1+

^{*} Not in CRPL-F or IAU

TABLE II CSW FLARES IMPORTANCE 2+ OR 3-NOT INCLUDED IN TABLE I

CSW Serial		Beg.	End	Max.				Importan	ce.
No.	Date	UT	UT	UT	Posit:	ion	CSW	IAU	McM
3515 3516 3530 3538 3540 3549 3645 3663 3707 3732	Jan. 5 6 7 7 20 22 24 27	0116 0157 0712 2025 0400 1830 1850 0454 1638 0830	0200 0240 0728 2115 0435 1840 2015 0619 1653 1100	0116 0157 2030 0407 1920 0459	N17 S24 N26 S23 N20 N20 N14 N15 S28 N13	W31 E61 W71 E38 W90 W65 E14 E05 W80 W70	2+ 3- 2+ 2+ 2+ 2+ 3- 2+ 3- 2+	2 2+ 2,1+ 2 2 2,2 2	1B 2 1B 1B
3747 3830 3899 3909	Feb. 1 13 25 26	1525 0044 0937 0108	1740 0110 0954 0150	1618 0046 0945 0120	N21 S24 S24 N33	W32 E26 W80 E28	2+ 2+ 2+ 2+	2 ,2+,1 2	1.B
4273 4290 4354 4381 4394 4411 4425	Apr. 6 8 12 15 17	1144 0333 1850 1410 0338 2220 2025	1153 0340 2010 1430 0400 2255 2150	1145 0336 1916 0344 2245 2033	N24 S23 S25 N25 S16 N27 N32	W90 E50 W73 E90 E80 E69 E56	2+ 2+ 3 2+ 2+ 2+	1 2,2+,2 2 2,2 1+ 2	1B
5004 5462 5512	June 1 22 24	2329 1335 2040	2356 1445 2102	2344 1415 2050	S25 S20 N07	wկկ E38 E73	2+ 2+ 2+	2- 1+ 2-	
651	<u>July</u> 28	1346	1458	1403	S23	w76	2+	2,2, 2,1+,1	2
1349 1502	Aug. 27 31	2347 2035	2405 	2352	N24 N14	W85 W10	2+ 2+	2	2
1701 2063 2209 2335	Sept. 5 15 19 22	2116 0426 0400 2006	2200 0450 0500 2014	2125 0428 2008	N08 N12 N24 N10,16	E74 W53 W10 E59	3- 2+ 2+ 3-	1,2 2	1 2 0 1+

The times enclosed in brackets for the Warwick flares 1362, 1367, and 2191 are the first beginnings and last endings as recorded in that list.

Comparing the flare importances in Columns IAU, CSW, and McM (Table I) we find that 21 of the major flares reduced to minor flare status (1, 1+, 2- or 2) in the Warwick list have a major flare status in the McMath-Hulbert working list, although some were reduced in importance (from 3+ to 3, or 3 to 2+). Six of the major flares that retained that status in the Warwick list were reduced to minor flares in the McMath-Hulbert working list. Forty-one of the major flares in Table I were reduced to minor flares in both the Warwick and the McMath-Hulbert lists. The Warwick list includes 36 flares with importance 2+, or 3- and one flare with importance 3. These are given in Table 1-i. We have included the CSW Serial Number; Date; Beginning, End, and Maximum Time; Position; CSW Importance; all importances reported in the IAU Quarterly Bulletin; Remarks.

The notation IA or IB in the remarks column indicates that the flare is included in Table 1-B or 1-C. The symbol "O" indicates that the flare is not listed in the IAU Bulletin.

TABLE I. CATALOGUE OF MAJOR SOLAR FLARES DURING 19

Support Number		.			A IOP T	T A DF				SOLA	R REGION		F	LARE IMP	ORTAI	NCE	FLAR	E ARE
Section Sect				M	AJOR F	LARE				SOLA		Number					Bango	No. 1
1 4 66 1009 1400 1102 121 130 170 1407 1102 130 121 1400 130 13 1 1 10000 13 1 1 1 10000 13 1 1 1 1							Posit	tion			Mt. W.		IAU			м м.	Range	NO.
10	1	4		1038	1403	1128	S 21	E40	3813	11	12068	17814	3+	6/1	2+	3	26-32	5
		1							3808	4	12054	17803	3	5/2	1	2+	10-30	3
14						1339	N17	W71	3808	4	12054	17803	3-	6/1	2+	2+	10-40	6
10		1							3820	15	12085	17829	3	1/1	3-	1	16	1
8	-								ļ	15		17829	3	10/2	2+	3	10-38	5
22 2310 2356 2314 N17 V17 3823 19 12089 17833 3. 1/1 3. 3. 3. 24 0247 0342 0250 N16 V26 3823 19 12089 17833 3. 3/1 2. 2. 18-19 32 0320 0357 0356 822 W89 3823 19 12089 17833 3. 3/1 2. 2. 18-19 33 0358 0550 0458 N24 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 11 17 31 0358 0550 0458 N24 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 12 28 0305 0450 0450 N48 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 13 26 28 0005 0450 0418 N18 W35 3863 31 12154 17884 3. 2/1 3. 3. 10-20 14 131 1414 1633 435 S16 E40 3888 72 12191 17911 2. 9/2 2. 2. 5-16 15 29 1025 1400 1115 S15 W40 3889 84 12216 17927 3. 5/1 2 2 1-12 16 Apr.		,										17829	3	2/1	2-	1	3-20	2
									l			17833	3+	1/1	3-	3+	32	1
9 12 24 1225 1354 1241 N16 W31 3823 19 12069 17833 3 4/1 2+ 3 2-15 10 25 0520 0527 0526 822 W89 3820 15 12065 17829 3 1/1 3- 3 16 11 17 31 0356 050 0436 N24 E05 3830 30 12114 17850 3+ 1/1 3- 3+ 25 12 Feb.												17833	3	3/1	2+	2+	18-19	2
10			!									17833	3	4/1	2+	3	2-15	4
11		12		_					l				l		3-	3	16	1
12			ļ.	_					l				1		3-	3+	25	1
12	11	17		<u>U338</u>	0000	0430	1767	200	3330	30		2,000	"	-, -	-			
14	12			0832	0915	0836	S 12	E06	3843	37	12122	17860	3	1/1	2 +	3] -	-
14	13	26	28	0005	0420	0014	N18	W35	3863	51	12154	17884	3	2/1	3	3	10-20	2
14					1000	1400	610	E40	2002	72	12101	17011	2.1	9/2	2-	2+	5-16	5
16																	1-12	:
16	15		1	1025	1400	1115	212	W4U	2899	04	16610	11361		-, -		_	1	
18	16			1002	1012	-	S 08	w 90	3899	1	12216	17927	3	1/1	3-	3	-	•
18	17	40	03	0825	1026	0835	S 14	w 60	3907	5	12235	17935	3	4/2	3-	3	-	
19 50 11 1/22 1800 178 323 204 3823 204 12285 17976 3 10/2 2+ 3 3-20	18		08	0616	0830	0622	S 19	W02	3916	18	12259	17956	3	6/1	2	2	6-15	
20 54 16 1040 1300 1105 N30 E85 3941 34 12285 17976 3 10/2 2+ 3 3-20	19	50	11	1722	1850	1738	S 23	E04	3923	20		17954	3	2/1	2+	2+	7	
20		_,			1000	1105	\$10C	E05	9041	24		17076	١,	10/2	2⊥	3	3-20	
21 55 17 1000 1112 1022 1047 S18 W18 3996 81 12368 18043 3 6/1 2 2 5-22			l		_				1				l				1	
22	21	55	l l	1006	1118	1022	N29	E76	3941	34	12283	TIAIO	'	0/2	<i>u</i> -	J		
23	22			1040	1202	1047	S18	W18	3996	81	12368	18043	3	6/1	2	2	5-22	
24	23		15	0730	0840	0743	S 18	E62	4022	99	12407	18067	3-	9/1	2	2	6-35	
25 82 19 1609 1649 1613 N20 E45 4024 103 12415 18071 3 5/1 2- 2 7-20	24		19	0609	0811	0640	S 38	E24	4021	100	12409	18068	3	7/1	1+	2	3-12	
26	25	82	19	1609	1649	1613	N20	E45	4024	103	12415	18071	2.	+ 4/2	2+	2	7-16	1
27	26		24	0724	0820	0739	N25	W27	4024	103	12415	18071	3	5/1	2-	2	7-20)
28	27		24	0838	0929	0850	N22	W14	4024	103	12417	18073	3	5/2	2+	2+	2-13	3
29			28	0658	0950	0722	N10	E27	4039	107	12434	18084	3	9/1	2	2+	5-12	2
30			30	0814	0915	0828	S 28	E60	4044	112	12449	18092	3	10/1	1+	2	5-14	ı
31			1		_	1025	NO9	w03	4039	107	12434	18084	2	+ 12/6	2-	2+	5-24	
31			July				·		1		10101	1000	.	, 9/9	1	9.	1,2	
32 92 03 0712 0830 0743 N14 W40 4039 33 04 1134 1154 - N12 E39 4048 11 12456 18096 3 1/1 1 3 24 34 04 1154 1213 - S10 E43 3 1/1 1+ - 25 35 08 0521 0802 0538 N14 W41 4046 8 12451 18094 2+ 9/2 2- 2 3-14 36 21 0633 0750 0658 N30 E15 4065 30 12491 18121 2+ 10/3 1+ 2 3-14 37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2	31		l										1				1	00
33	32	92	03								12434	18084	3	T 17/4	J-	3+	3-10	
34 04 1154 1213 - S10 E43 - - - - - 3 1/1 1+ - 25 35 08 0521 0802 0538 N14 W41 4046 8 12451 18094 2+ 9/2 2- 2 3-14 36 21 0633 0750 0658 N30 E15 4065 30 12491 18121 2+ 10/3 1+ 2 3-14 37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 523 E07 4070 31 12496 18122 3 4/2 2+ 3 15-2 40 109	33		04		_		N12	E39	4048	3 11	12456	18096	3	1/1	1	3	24	
35			1				S 10	E43	1 -	-	-	-	3	1/1	1+	-	25	
36	ŀ		1				N14	W41	4046	6 8	12451	18094	2	+ 9/2	2-	2	3-1	4
37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2			1				N30	E15	406	5 30	12491	18121	2	+ 10/3	1+	2	3-1	4
38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2	l	103	1	_		•			406	5 30	12491	18121] 3	7/1	2-	2	5-8	
39			l l	_					407	5 33	12503		3	1/1	3-	3	53	
39	~	100		,,,,,										- /-	_	_		ıs
40 109 24 1712 1801 1737 S24 W27 4070 31 1230	39		22	1240	1505	1303	S 23	B E07	407	0 31			1					
	40	109	24					4 W27	407	0 31	12496	18122	3	4/2	2+	3	15-	-23
41 27 0637 0820 0703 S24 W61 4070 31 12496 18122 2+ 9/2 1+ 2 3-20	۸,					•		4 WE1	402	O 21	12496	18122	,	9/2	1+	2	3-2	20

57 WITH ASSOCIATED PHENOMENA AND SELECTED EFFECTS

80 PEC	DEL .	E1	E ACITY TOTAL	g w F		RADIO EM	(ISSIONS		POLAR CAP ABS.	GEOMAGNETIC STORM
SQ. DEG.			E ACTIVITY	S.W.F.	Bash	Flux	Other	Dynamic	Gr. /Beg. / Abs.	Gr. / Beg./ Type/ Int./ Max.
p. Mean	Minor/I Before	Major After	First Flare Pos./Imp.	Beg./Dur./Imp.	10 cm.	1.5 m.		П & IV	Day UT db	Day UT / Kp
28	6/0	13/0	E81/1		-	-	m			
19	21/0	5/1	E65/1		(160)	-	-		i	
19	25/1	1/0	E65/1	1330/30/2	(65)	-	m			
16	0/0	30/3	E70/3			-	-		Jan.	Jan.
20	16/1	14/2	E70/3	1113/13/1+	184	-	m		20/1500/4.1	21/1255/sc/s/9-
12	23/2	7/1	E70/3		-	-	cm		1	
32	11/0	14/2	E50/1		-	-	m			
19	11/1	14/1	E50/1	0240/20/2	-	-	cm			
8	13/2	12/0	E50/1	1235/35/2	250	200	m			
16	30/3	0/0	E70/3	0528/20/1	-	-	cm			
25	0/0	2/0	E05/3+	0356/84/1	234	-	cm	11		
	0/0	1/0	E06/3	ł	-	35	m			
15	2/0	1/0	E23/2-	0020/110/1+	-	240	m	II,IV		
10	6/0	5/0	E67/1+] _	_	-			
7	23/0	6/1	E73/1	1024/131/3	(<u>84</u>)	-	m			
					1				ļ	
-	29/1	0/0	E73/1		ļ -	-	cm,m		April	
-	12/0	12/0	E40/1	0833/35/2	-	10	cm,m	(IV)	03/1330/3.9	
10	5/0	1/0	E90/1	0612/48/2	-	-	em			
7	25/0	3/0	E90/1	1731/64/3	(135)	-	m			Apr.
11	1/0	34/1	l E90/2	1044/76/3	1670	800	cm,m	(IV)		17/1136/sc/s/8-
10	2/1	33/0	E90/2	1004/79/3	-	-	cm			
11	16/0	13/0	0 E29/1+	1045/20/2+	(250)	250	m	(IV)		
15	3/0	3/		0735/30/2	38	-	cm			
8	29/0	25/		0615/41/2-	\ _	-	cm		ļ	
10	5/0	27/		1608/44/3	(2325)	260	m	II,(IV)	
11	17/1	13/				-	-		1	
8	17/2	13/		0849/28/3-	_	400	,	(IV)	ļ	
9	17/0	25/		0708/20/2-	-	1500	cm,	m (IV)	1	June 30/0528/s c/s/8+
8	7/0	15/			-	-	-		1	To be
12	24/1	18/		1	119	-	m	(IV)		July 02/0857/sc/s/80
13	35/2	7/1		0709/17/1		-	cm cm,	m (IV)	July 03/1000/9.2	04/2342/sc/ms/7+
31	42/3	0/0) E75/1	0729/61/2+ 0830/44/3	585 600	3400	em,	(17)	03/1000/8.2	01/ 2012/ 00/ His/ 11
24	6/0	10/	/0 E88/1		1 -	200	-			
25					-	-	-			
8	20/0	7/0	E74/1	0536/24/1+	359	-	em,	,m		
8	18/0	17,	/1 E85/1-	0547/60/3	536	-	c m			
7	19/1	16,	/0 E85/1-	1335/45/2	(850)	300	m	(IV)		
53	9/0	15,	/0 E85/2		-	250	m		-	
8	8/0	18	/2 E58/1	1	.	340	m			
19	1	8/		1727/113/		200	cm	,m IV	24/2015/2	
_	22.12	<i>ر</i> م ر	O 5550/4	1759/81/3	-	180	m			
8	20/2	6/	0 E58/1		1	100	•••			

2.1-/

				3.4	AIOP 1	TI ADD												
	Sorial	P :							+					FLARE IM	PORTA	NCE	FLARI	E AREA
							Pos	ition				Green-	IAU			м ^с м.	Range	No. F
	42			1116	1257	1134	N27	W57	4083	45	12516	18141	2+	11/4	2-	2+	4-17	9
	43		21	<u>0745</u>	0844	0756	N24	E20	4112	66	12563	18171	3	8/2	1+	2+	3-12	7
Accordance	44		23	1126	1300	1154	N16	W17	4112	66	12563	18171	3	7/1	2-	2	6-18	5
14	45	125	28	0810	1404	0955	S 31	E33	4125	73	12579	18181	3+	11/2	3	3	4-52	8
14	46	126	28	2010	2048	2024	S 28	E30	4125	73	12579	18181	3	4/1	2+	2+	2-11	2
1	47		29	0545	0715	0555	N24	E35	4124	74	12580	18182	2+	8/2		2	2-10	7
	48		29	1031	1201	1052	S 25	E20	4125	73	12579	18181	3	11/1	2-	2	3-9	7
	49		30	0620	0804	0600	N26	E22	4124	74	12580	18182	2+	9/2	1+	2	2-22	7
1	50		31	0521	1048	0727	S 32	W02	4125	73	12579	18181	3	10/1			5-21	10
Secondary	51	132	31	1257	1557	1312	N25	W02	4124	74	12580	18182	3+				7-13	6
Signature Sign	52		31	1338	1455	1353	N12	W02	ı									4
1	59	195		0046	1020	0052	N/12	woo										
		100	İ									·						3
Section Sect									1						2-		i	
57		1201-		_					1									6
68 142 03 1412 1727 1429 N23 W30 4124 74 12580 18182 3 13/6 3 3 7-20 8 59 06 0751 0900 0803 N23 w66 4124 74 12580 18182 3 11/1 2 2 6-45 8 60 09 0755 0855 0813 N12 E22 4134 80 12596 18194 3 1/1 2 2 4-17 6 61 146 10 0702 1030 0833 317 E16 4141 81 12506 18194 3 1/1 1 2 2-9 10 63 148 11 0236 0720 0833 317 E16 4141 81 12506 18194 3 1/1 1 2 2-11 6 63 152 12 0703 0740<		138D	02	1313	1030	1310	534	WJb	4125	73	12579	18181	3	4/1	1+	2+	6-16	4
			03	0647	1127	0850	N15	W38	4124	75	12581	18183	3	6/1	2-	2	2-10	5
60 09 0755 0855 0813 N12 E22 4134 80 12596 18194 3 9/1 2- 2 4-17 6 61 146 10 0222 0300 0250 N14 E16 4134 80 12596 18194 3 1/1 2+ 3 12 1 62 10 0702 1030 0833 S17 E16 4141 81 12606 18197 3 12/1 1 2 2-9 10 63 148 11 0236 0722 0300 N13 W02 4134 80 12596 18194 3 5/2 3- 3 7-23 3 64 150 12 0703 0740 0713 N09 W15 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 65 152 12 1510 1638 1516 N11 W18 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 66 16 16 1451 1709 1459 N08 E48 4152 93 12623 18211 2+ 9/3 2 2+ 6-10 6 67 17 0416 0945 0867 N23 E28 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0702 0633 N23 E13 4151 91 12622 18209 2+ 6/2 2- 2 11-22 4 69 160 18 1626 1613 1325 N23 E10 4151 91 12622 18209 3 12/3 2- 3 3-3 3 11.3 70 161 18 1658 2110 1240 N23 E08 4151 91 12622 18209 3 12/3 2- 3 3-3 3 11.3 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3 16/4 2-,3 3+ 11.3 10 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3 16/4 2-,3 3+ 11.3 10 72 17 188 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 10/1 1 1 1 4-20 7 74 188 21 1330 1510 1335 N10 W06 4152 94 12636 18223 3 5/3 3-3 3 12.14 2 77 179 000 040 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5 5-22 2 78 181 13 0334 0641 039 N12 E40 4168 34 12689 18262 3 1/1 3 3 3 15 1 1 80 160 041 0413 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 1+ 11-10 6 81 181 043 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 1+ 11-10 6 82 190 020 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1 1 1 1 4-10 3 84 181 13 0334 0641 0339 N12 E40 4188 38 12689 18262 3 3/1 1 1 1 1 1 4-10 3 84 181 13 0334 0641 0339 N12 E40 4188 38 12689 18262 3 3/1 1 1 1 1 1 1 4-10 6 82 190 020 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58	142	03	1412	1727	1429	N23	W30	4124	74	12580	18182	3	13/6	3-	3	7-20	8
61	59		06	0751	0900	0803	N23	W66	4124	74	12580	18182	3	11/1	2	2	6-45	8
10 0 0702 1030 0833 S17 E16 4141 81 12606 18197 3 12/1 1 2 2-9 10	60		09	0755	0855	0813	N12	E22	4134	80	12596	18194	3	9/1	2-	2	4-17	6
148	61	146	10	0223	0300	0250	N14	E16	4134	80	12596	18194	3	1/1	2+	3	12	1
64 150 12 0703 0740 0713 NO9 W15 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 65 152 12 1510 1638 1516 N11 W18 4134 80 12596 18194 3 8/1 2- 2 3-8 6 66 16 1451 1709 1459 NO8 E48 4152 93 12623 18211 2+ 9/3 2 2+ 6-10 6 67 17 0416 0445 0807 N23 E28 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0720 0633 N23 E13 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0720 0633 N23 E13 4151 91 12622 18209 3+ 6/4 2- 3 3-133 10 10 161 18 1626 1613 1325 N23 E10 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 1610 18 1658 2110 1420 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 162 19 0350 0555 0410 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 162 19 0350 0555 0410 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 1636 16323 1636 16333 1633 1633 1636 16333 1636 16333 1636 16333	62		10	0702	1030	0833	S 17	E16	4141	81	12606	18197	3	12/1	1	2	2-9	10
152 122 1510 1638 1516 N11 W18 4134 80 12596 18194 3 8/1 2 2 3 3 6 6 6 16 1451 1709 1459 N08 E48 4152 93 12623 18211 2 9/3 2 2 6 6 6 6 17 0416 0945 0807 N23 E28 4151 91 12622 18209 2 8/2 1 2 4 4 19 5 5 6 6 18 0624 0720 0633 N23 E13 4151 91 12622 18209 2 8/2 1 2 2 2 1 2 2 4 4 19 5 6 6 6 6 6 6 6 6 6	63	148	11	0236	0722	0300	N13	W02	4134	80	12596	18194	3	5/2	3-	3	7-23	3
66	64	150	12	0703	0740	0713	N09	W15	4134	80	12596	18194	3	7/1	1+	2	2-11	6
67	65	152	12	1510	1638	1516	N11	W18	4134	80	12596	18194	3	8/1	2-	2	3-8	6
68	66		16	1451	1709	1459	N08	E48	4152	93	12623	18211	2+	9/3	2	2+	6-10	6
69 160 18 1026 1613 1325 N23 E10 4151 91 12622 18209 3 12/3 2- 3 3-13 10 70 161 18 1658 2110 1840 N23 E08 4151 91 12622 18209 3+ 6/4 2-,3+ 3+ 11-33 4 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3+ 5/1 3; 3 7-52 5 72 19 0744 1200 0800 N23 E01 4151 91 12622 18209 2+ 12/2 2- 2 3-16 10 73 21 0518 1325 0614 N09 W01 4152 94 12634 18216 3 10/1 1 1 4-20 7 74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 11/3 2 3 2-20 8 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 6/4 2- 3 19-24 3 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3- 3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 3 1 1+ 11-20 6 82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3	67		17	0416	0945	0807	N23	E28	4151	91	12622	18209	2+	8/2	1+	2+	4-19	5
70	68		18	0624	0720	0633	N23	E13	4151	91	12622	18209	2+	6/2	2-	2	1-22	4
71	69	160	18	1026	1613	1325	N23	E10	4151	91	12622	18209	3	12/3	2-	3	3-13	10
72 19 0744 1200 0800 N23 E01 4151 91 12622 18209 2+ 12/2 2- 2 3-16 10 73 21 0518 1325 0614 N09 W01 4152 94 12634 18216 3 10/1 1 1 4-20 7 74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 10/1 1 1 4-20 7 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 5/4 3-3 12-14 2 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355	70	161	18	1658	2110	1840	N23	E08	4151	91	12622	18209	3+	6/4	2-,3+	3+	11-33	4
73	71	162	19	0350	0555	0410	N23	E02	4151	91	12622	18209	3+	5/1		3	7-52	5
74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 11/3 2 3 2-20 8 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 6/4 3-3 19-24 3 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2-2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 4/1	72		19	0744	1200	0800	N23	E01	4151	91	12622	18209	2+	12/2	2-	2	3-16	10
75	73		21	0518	1325	0614	N09	W01	4152	94	12634	18216	3	10/1	1	1	4-20	7
76	74	168	21	1330	1510	1335	N10	W 06	4152	94	12634	18216	3	11/3	2	3	2-20	8
76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 4/1 2- 2 3-32 4 81 19 0603 0920 0639 S24 W25 4189 38 12689 18262 3 8/2	75	173	26	1907	2345	1952	N22	E15	4159	98	12636	18223	3	6/4	3-	3	19-24	3
77	76	176	30			1706	N25	w 37		98		- 1						2
78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 4/1 2- 2 3-32 4 81 19 0603 0920 0639 S24 W25 4189 38 12689 18262 3 8/2 2- 2+ 11-20 6 82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2 83 21 1212 1314 1218 S25 W52 4189 38 12689 18262 3	77	179		<u>0</u> 340	0500	0355	S38	W14	4173	21	12669	18247	3	3/1	2-	2	5-22	2.
79	78	181										- 1						
80	79	185																
81 19 0603 0920 0639 S 24 W 25 4189 38 12689 18262 3 8/2 2- 2+ 11-20 6 82 190 20 1637 1804 1642 S 26 W 45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2 83 21 1212 1314 1218 S 25 W 52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S 27 W 77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2	80																	
82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2 83 21 1212 1314 1218 S25 W52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2	81			_														
83 21 1212 1314 1218 S 25 W 52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S 27 W 77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2	82	190	20	1637	1804	1642	S 26	W45		38	12689	1						
84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2	83		21									1						
0 2/1 0 17 11-13 2	84	ŀ	23		_			W77								J		
																		<u> </u>

(CONTINUED)

SQ.	DEG.	RELATE Minor/		E ACTIVITY	S.W.F.		RADIO EMI			POLAR CAP ABS.	GEOMAGNETIC STORM
p.	Mean	Before		First Flare Pos./Imp.	Beg./Dur./Imp.	Pea 10 cm.	k Flux 1.5 m.	Other Wave	Dynamic	Gr. / Beg. / Abs.	Gr. /Beg./Type/Int./Max
		L						Lengths	II & IV	Day/ UT/ db	Day./UT/ / Kp
	8	31/0	6/0	E86/2-	1110/61/0	_	250	cm m		Aug.	
	8	16/0			1119/51/2		350 150	cm,m		09/1600/3.1	
			23/1	E73/1		-	150	m			
	11	23/1	16/0	E73/1		- 	-	em			
	19	17/0	32/5	E87/1	0917/138/3	1192	-	cm	(IV)		Aug.
	7	18/1	31/4	E87/1	2020/18/2+	(760)	450	m	п	29/0000/3.2	29/1920/sc/ms/7-
	6	13/0	32/4	E90/1	0542/48/3-	362	•	cm			
	5	21/2	28/3	E87/1	1039/16/1+	- ,	550	cm,m		29/1300/9	31/1812/s c/ms/7o
	8	20/1	25/3	E90/1	0620/40/2	-	-	cm,m			
	11	34/3	15/2	E87/1		569	1600	cm,m	(IV)		Sept.
	10	26/2	19/2	E90/1	1303/184/3+	(3900)	1200	cm,m	IV	31/1500/5	02/0314/sc/s/9-
	4	13/0	38/3	E90/1+		-	1600	m			
	7	20/1	31/2	E90/1+	0950/40/2	605	2000	om m			
	6	21/2	30/1		0030/40/2			cm,m			
	8	39/4	10/1	E90/1+ E87/1		(204)	-	m 		Sept.	04/1300/en/ :-
	10					-	-	m	()	2/1700/7.2	04/1300/sc/s/9.
	10	40/5	9/0	E87/1		-	1200	em,m	(IV)		03/1233/-/s/9-
	6	33/3	18/0	E90/1+		341	140	cm			
	14	36/3	9/1	E90/1	1420/103/3	(1350)	320	em,m	(IV)		
	16	42/4	3/0	E90/1	0800/60/2-	430	-	cm			
	10	18/0	17/4	E87/1		270	_	cm			
	12	18/1	17/3	E87/1		349	-	cm			
	6	0/0	40/0	E18/3		- '	253	cm,r			
	17	20/2	15/2	E87/1	0244/100/3	-	520	cm,m	īv		12/2154/sc/s/9-
	7	22/3	13/1	E87/1	0702/32/3-	443	1880			10/1000/1 5	13/0046/sc/s/9-
	6	23/4	12/0	E87/1	1513/39/2+	ŀ		cm,m	Π	12/1200/1.5	
	8	16/0	26/0	E73/2		(850)	1050	cm,m	II,IV		
	9	17/0	52/5	E13/2 E90/?	1458/22/1+	320	300	cm,m			
	8	27/1	42/4	E90/?	0411/49/2+	427	390	cm			
	9				0630/20/1+	•	118	em			
	25	30/2	39/3	E90/?	1030/104/3	-	500	m	_		
	ı	30/3	39/2	E90/?	1730/43/3+	(275)	356	m	IV		21/1005/sc/ms/7+
	22	34/4	35/1	E90/?	0359/54/3	1410	1420	cm	IV		
	10	35/5	34/0	E90/?	0800/35/2	-	-	m			
	8	0/0	10/1	W02/3			-	cm			
	9	10/1	0/0	W02/3	1330/60/3-	(785)	1800	cm,m	IV	21/1700/5.1	22/1344/sc/s/9- 23/0235/sc/s/9-
	23	4/0	10/1	E90/1	1925/100/2+	_	384	m	īv	26/2315/2	29/0016/sc/s/9-
	13	9/1	5/0	E90/1	1700/40/3	(120)	-		17	40/4313/4	29/0010/80/8/9-
		-, -	J, U	200/1	55, 10, 5	(200)	*	-			
	14	5/0	4/0	E47/1		36 6	-	cm	п		
	13	5/0	8/0	E90/?	0541/25/1	-	-	cm			
	15	26/0	55/5	E90/1	0150/20/2+	-	-	cm			
	12	26/1	55/4	E90/1	0417/30/2	435	-	cm			
	16	51/2	30/3	E90/1	0620/55/1+	-	46	cm			Oct.
	30	58/3	23/2	E90/1	1639/156/3+	(4000)	-	m	II,IV	21/0630/5	21/2241/sc/ms/7-
	9	62/4	19/1	E90/1	1215/35/2	306	-	-			
	12	70/5	11/0	E90/1	0620/32/2	_ ,	~	cm			
_					, 02/2						L

TABLE 1. 1957

			М	AJOR F	LARE			<u> </u>	SOLA	R REGION		FI	ARE IM	PORTA	NCE	FLARE	AREA S
Serial No.	Event No.	Gr. Day	Beg. UT	End U"	Max. UT	Pos	ition	Plage No.	Region No.	Sunspot Mt. W.	Number Green- wich		io. /No. Rep./ Ma		м ^с м,	Range.	No. Re
85		Oct. 27	1300	1310	-	S 23	E01	4203	52	12718	18287	3	1/1	1-	1	2	1
86		Nov. 02	0904	0955	0918	S 21	W 16	4207	61	12732	18300	2+	8/2	1	2	6-14	. 6
87	206	05	1205	1257	1207	S 24	W54	4207	61	12732	18300	3	5/1	2-	2	2-21	4
88	208	06	0834	0900	0841	S 28	W67	4207	61	12732	18300	2+	9/2	2-	2	2-19	7
89		10	0606	0735	0623	S25	E65	4237	79	12768	18327	3	4/1	2+	2	8-50	4
90		13	0800	0925	-	N19	W18	4230	74	12763	18326	3	5/1	2	2	2-13	4
91	213	15	0517	0636	0537	N18	W45	4230	74	12763	18326	3	3/1	2-	1+	5-20	3
92	218	23	0750	0925	0804	N26	W54	4246	83	12779	18338	3	10/1	2+	2	4-18	8
93	219	24	0848	1202	0911	S14	E37	4263	92	12788	18353	3+	7/1	3-,3	3	5-62	7
94	224	29	0045	0600	0213	N41	E63	4282	104	No Spots		3+	1/1	3+	3+	34	1
95		Dec. 02	1025	1200	1107	S 17	W34	4269	96	12800	18357	2+	8.2	2-	2+	3-14	7
96		03	1035	1430	1110	S 19	W49	4269	96	12800	18357	2+	4, 2	1	2	5-11	2
97		05	0548	0812	0657	S 20	W19	4288	103	12808	18361	3	4/1	2	2+	5-21	4
98		12	0249	0407	0314	S 33	W09	4301	116	12840	18385	3 .	2/1	2-	2	4-17	2
99	234	12	1750	1859	1806	N15	W41	4295	1112	12832	18377	2+	4/2	2+	2+	7-9	3
100	236	14	1245	1450	-	N18	E78	4314	126	12855	18398	3	2/1	3-	2+	9-36	2
101		16	1125	1238	1140	N17	E50	4314	126	12855	18398	3	9, 1	2-	2	6-28	6
102		18	0408	0550	0500	N17	E26	4314	126	12855	18398	3	4/1	2-	2	3-18	4
103		18	0605	0712	0624	N17	E20	4314	126	12855	18398	3	2/1	2	2	14-17	2
104	238	19	0757	1315	0801	N20	E13	4314	126	12855	18398	2+	4/2	2+	2+	5-12	4
105		21	2232	2400	2251	N24	E50	4321	136	12874	18408	3	3/1	3-	2	13-22	2

TABLE IA. IAU MAJOR FLARES (TABLE I.) 1957, REDUCED TO IMPORTANCE ≤ 2 IN THE McMATH WORKING LIST

Serial No.	M ^C M Serial		Beg. UT	Pos		Imp: IAU	ortance M ^C M	Obs. Reporting Max. Importance	Other Importances Reported
		Jan					•		
4	-	14	0020	S24	E70	3	1	Sydney	
6	-	23	0144	S25	W52	3	1	Sydney	1
		Mar							2+,2,2,2
15	-	29	1025	S15	W4 0	3-	2	Capri F.	2+,2,2,2
		Apr							
18	-	08	0616	S19	W02	3	2	Kharkov	2+,2,2,2,2,1
		June							
22	-	03	1040	S18	W18	3	2	Wendelstein	2+,2,2,2,2
23	-	15	0730	S18	E62	3-	2	Meudon	2+,2,2,2,2,2,2
24	-	19	0600	539	E24	3	2	Istanbul	2,2,2,2,1+,1:
25	-	19	1609	N20	E45	2+	2	Capri S & Capri F.	2,2
26	-	24	0724	N25	W27	3	2	Istanbul	2+,2,2,1
29	-	30	0814	S28	E60	3	2	Uccle	2,2,2,2,1+,1+,1+,1+,1
		July							
35	105	08	0521	N14	W41	2+	2	Abastumani and Tachkent	2,2,2,1+,1+,1,1,?
36	236	21	0633	N30	E 15	2+	2	Abastumani, Moscow & Utrecht	2,2,2,2,2,1+,1
37	242	21	1320	N29	E 12	3	2	Kharkov	
39	275	22	1240	S 23	E 07	3	2	Nizmir	2,2,2,2,2,1
41	346	27	0637	S 24	W61	2+	2	Istanbul & Utrecht	2,2,2,2,2,1+,1+,1 2,2,2,2,2,1+,1
		Aug.		N16					5,5,5,5,17,1
44	628	23	1126	N10 N24	W17 E35		2	Uccle	2+,2,2,2,1+,1+
47	716	29	0545					Abastamani & Mitaka	2,2,1+,1+,1+,1
48	723	29	1031	S 25	E 20		2	Arcetri	2+,2,2,2,2,1+,1+,1+,1+,1
49	737	30 Sept.	0620	N26	E 22	2+	2	Abastumani & Istanbul	2,2,2,2,1+,1
53	787	01	0946	N12	W09	3	2	Uccle	2,2,2,1+,1
57	818	03	0647	N15	W38	3	2	Moscow	2+,2,2,1,1
59	867	06	0751	N23	W66	3	2	Moscow	2+,2+,2+,2,2,2,2,2,2,1+
60	900	09	0755	N12	E 22		2	Kharkov	2+,2,2,2,2,2,2,1+
62	909	10	0702	S 17	E 16		2	Nizmir	2,2,2-,1+,1+,1+,1+,1+,1,1,1
64	944	12	0703	NOS	W15		2	Istanbul	2,2,1+,1+,1+,1
65	953	12	1510	N11	W18		2	Ondrejov	
68	1061	18	0624	N23	E 13		2	Crimee & Istanbul	2+,2,2,2,2-,1+,1
72	1079	19	0744	N23	E 01		2	Moscow & Wendelstein	2,1+,1+,1
73	1116	21	0518	N09	W01		1	Abastumani	2,2,2,2,2,2,1+,1+,1 2,2,2,1+,1+,1+,1+,1,1
		Oct.							
77	1368	09	0340	S 38	W14		2	Mitaka	2,1+
80	1498	16	0413	S 26	E 20		2	Mitaka	2,2,1
83	1582	21	1212	S 25	W52		1+	Wendelstein	1+,1+,1
84	1606	23	0621	S 27	W77	3	1+	Mitaka	1+
85	1694	27	1300	S 23	E 01	3	1	Zurich	
86	1785	Nov. 02	0904	S 21	W16	2+	2	Moscow & Utrecht	22521.1
			1205	S 24			2		2,2,2,2,1+,1
87	1810	05	0834		W54		2	Kharkov	2,1+,1,1
88	1815	06		S 28	W67			Kiev Ko, Kiev Ky	2,2,2,2,1+,1,1
89	1841	10	0606	S 25	E 65		2	Abastumani	2,2,2
90	1880	13	0800	N19	W18		2	Capri F.	2,2,1+,1
91	1890	15	0517	N18	W45		1+	Sydney	1+,1+
92	1967	23	0750	N26	W54	3	2	Moscow	2+.2+,2,2,2,2,2,1

2.1-3

:ONTINUED)

DEG.	RELATED FLARE ACTIVITY			S.W.F.		RADIO EM	ISSIONS		POLAR CAP ABS.	GEOMAGNETIC STORMS				
Mean	Minor, Before	Major After	First Flare Pos./Imp.	Beg. Dur. Imp.	Peak 10 cm.	Flux 1.5 m.	Other Wave Lengths	Dynamic II & IV	Gr. / Beg. / Abs. Day / UT / db	Gr. / Beg. / Type / W. / Max. Day / UT / Kp				
2	5/0	7/0	E85/1		-	-	m							
10	31/0	16/2	E87/1-	0914, 26/2-	-	432	cm			Nov.				
8	43/1	4/1	E87/1+	1207/14/2+	(550)	38000	cm,m	(IV)		06/1821/sc/ms/7o				
9	43/2	4/0	E87/1+	0833/29/3-	572	-	cm							
22	5/0	12/0	E86/1+	0607, 18/1	-	-	cm,m							
8	8, 0	5/1	E75/1	0834 21,3	٠	-	-							
15	10/1	3/0	E75/1	0527, 51/1-	537	•	cm,m							
11	21/0	5/0	E68/1	0757;40/2	560	1800	cm	(IV)						
22	6 0	29/0	E75/1	0901-32/3-	998	50000	cm,m	(IV)		26/0155/sc/ms/7- 26/1454, g/ms/7-				
34	0/0	0/0	E63/3+		-	-	cm	11		Dec. 01/0336/sc/ms/6-				
9	15/0	11/1	E58/1		-	-	cm							
8	19.1	7,10	E58, 1		-	-	m							
14	31/0	12/0	E90/1		375	-	cm							
11	3 · 0	0/0	E75/1		-	-	-							
8	5/0	0.0	E71/2+	1802, 28/1	(94)	<u>54</u>	-	II						
23	2.0	37, 4	E90/1	1233, 67/3	-	5900	cm,m	(IV)						
14	7/1	32/3	E90/1	1129/33/1+	366	50000	cm,m	(IV)						
11	11/2	28/2	E90/1	0500/15/1+	409	-	cm							
21	11/3	28 1	E90/1	0620, 30/2	-	3500	cm							
9	13 4	26, 0	E90/1	0757, 23, 3	-	950	cm,n	II, (IV)						
18	5/0	25, 0	E69/1+	2235, 65, 3+	. 556	-	rm							

TABLE IA. (CONTINUED)

Serial M ^C M No. Serial		Date	Beg. UT	Pos	ition	Impo IAU	rtance M ^C M	Obs. Reporting Max. Importance	Other Importances Reported
-		Dec.							
96	2135	03	1035	S19	W49	2+	2	Uccle & Nera	2,1+
98	2231	12	0249	S 33	W09	3	2	Sydney	1
101	2270	16	1125	N17	E 50	3	2	Kharkov	2+,2+,2,2,2,2,1+,1+
102	2281	18	0408	N17	E 26	3	2	Mitaka	2,2,1
103	2262	18	0605	N17	E 20	3	2	Sydney	2
105	2326	21	2232	N24	E 50	3	2	Honolulu	2.2

TABLE IB. FLAR S REPORTED BY ONLY ONE OBSERVATORY - IAU IMPORTANCE 2+

M [°] M Serial No.	Date	Beg. UT	End UT	Max. UT	Posit	ion	Plage No.	Observatory
	Jan.							
	05	0157	0240	0157	S 24	E 61	3813	Mitaka
	07	1830	1840	-	N20	W65	3808	Mc Math
	11	0730	0857	0800	S 24	W25	3813	Istanbul
	20	1850	2015	1920	N14	E 14	3823	Sac. Peak
	Feb.	_						
	25	0937	0954	0945	S 24	W80	3855	Herstmonceux
	Apr.							
	06	1144	1153	1145	N24	W90	3909	Crimee
	July							
209	18	0852	1134	0916	S 09	E 19	4066	Moscow
279	22	1403	1410	-	N28	E 02	4063	Moscow
	Sept.							
1158	23	1211	1340	1242	N09	W44	4152	Kiev Ko
	Nov.							
2001	25	0717	0743	-	N23	W55	4247	Athens

TABLE IC IMPORTANCE 2+ FLARES NOT LISTED AS MAJOR FLARES

Date	Beg. UT	End UT	Max. UT	Position		IAU Max.	Importance By Others	M ^c M	Total Sta. Reported		Range	Area No. Rept.	Mean	
Jan. 08	1006	1142	-	S 20	E 14	2+	2	2+	2	3813	9-20	2	15	
July 03	0544	0610	0545	N09	E 14	2 +	1	2+	2	4046	3	1	3	
Oct. 19	1916	2006	1925	S 25	W21	2+	2	2+	2	4189	21	1	21	

TABLE II. CATALOGUE OF IMPORTANT SUNSPOT GROUPS DURING 1957

This catalogue will list all sunspot groups that, during disk passage, meet one or more of the following requirements:

- (a) All sunspot groups with a maximum area, during disk passage, equal to or greater than 500 millionth of the solar hemisphere, as recorded in the Royal Greenwich Observatory Bulletin No. 26 Photoheliographic Results, 1957 (reference 61).
- (b) All sunspot groups that have a γ or $\beta\gamma$ magnetic classification as reported by Mt. Wilson Observatory in Reference 66.
- (c) All sunspot groups associated with the major solar flares catalogued in Table I.

The column headings together with any necessary explanations follow:

Column 1 Catalogue Serial Number.

Column 2 Mt. Wilson Sunspot Number.

- Column 3 Greenwich Sunspot Number. In a few cases the identification of a Mt. Wilson spot with a Greenwich spot was difficult and may be subject to change. Occasionally two Mt. Wilson groups correspond to one Greenwich group and vice versa. The associations given in this catalogue were obtained by studying microfilm of the Mt. Wilson sunspot drawings, the Zurich maps and spot positions given in reference 54 with the daily spot datagiven in reference 61.
- Column 4 Catalogue Classification from a, b, or c Above. A sunspot with a maximum area greater than 500 millionth is designated in this column by the letter L. If the entry is due to the magnetic classification, the letter M is used. If the sunspot groups are associated with a major flare, the flare serial number or numbers are used. There will be cases where all three symbols may appear in the column, as well as more than one major flare.
- Column 5 McMath Plage Number.
- Column 6 Sunspot Mean Latitude During Disk Passage.
- Column 7 Sunspot Mean Longitude During Disk Passage.
- Column 8 Time of Central Meridian Passage. This date is given to the nearest one-hundredth of a day if the group crossed the central meridian. If the spot was last seen east of the central meridian or was first seen west of the central meridian, the CMP time is estimated and given to the nearest tenth of a day.

- Column 9 Spots in the Plage. We have given the Mt. Wilson numbers for all sunspots in the plage during disk passage, these are from McMath-Hulbert unpublished data.
- Column 10 Plage Catalogue Serial Numbers. If the plage is included in the Table III catalogue, detailed data for the sunpots listed in Column 9 are given in that table.
- Column 11 Maximum Area. This is the corrected area given in the Greenwich Report. The first number gives the area of the umbra, the second number is the area of the whole spots that make up the group. Both values are expressed in units of millionth of the solar hemisphere.
- Column 12 Position of the Maximum Area.
- Column 13 Greenwich Day of Maximum Area.
- Column 14 This is the time interval in days from the date of maximum area to the date of the flare (when applicable).

 A negative number indicates that the flare occurred after the spot group had attained the maximum area.
- Column 15 Mean Area. This is the corrected value given in the Greenwich general catalogue of sunspots. The first number is the mean umbra area, the second number gives the corrected mean area for the whole spots.
- Column 16 Mean Magnetic Class. The value given in reference 66 is used. (The symbols are defined on page 2.II-9)
- Column 17 Mean Magnetic Strength. The values in units of 100 Gauss have been taken from reference 66.
- Column 18-23 give the values on flare day when applicable:

 (18) flare day; (19) Corrected area; (20) Zurich classification; (21) Magnetic classification; (22) Magnetic field strength, and (23) Position. If more than one major flare occurred in the spot the flare day and flare day data are given in successive lines corresponding to the flare serial numbers given in Column 4.
- Column 24 Disk Passage Data. The five lines in this column give the following data:

Top Line - The left hand number gives the date on which the sunspot was first seen; the right hand number gives the date on which the sunspot was last seen. These data have been taken from the three references 65, 61, and/or 34.

<u>Second line</u> - The left hand number gives the longitude from the central meridian where the spot was first seen; the right hand number gives the longitude distance from the central meridian where the spot was last seen.

Third line - This line gives the Zurich classification of the spot for each day (on which a classification was made) during disk passage as recorded in reference 54. (An explanation of the classification is given on page 2.II-9.

Fourth line - The Mt. Wilson magnetic classification of the sunspot on each day that a classification was made during disk passage. If the classification is an estimate, the symbol is enclosed in brackets. The data for this line are taken from a microfilm of Mt. Wilson daily work sheets. (Reference 63).

Last line - This gives the magnetic field strength in units of 100 gauss for each day on which the field strength was measured and shown on the Mt. Wilson daily sunspot maps. The values given on this line are the maximum values shown on the map.

- Column 25 Recurrent Spots. If the sunspot group is the return of a previous group determined by Mt. Wilson and/or Greenwich, the serial number, or numbers, of the groups during the previous rotation or rotations are given. The top numbers give the Greenwich sequence, the bottom numbers give the Mt. Wilson sequence.
- Column 26 Remarks. A general description of the spot group adapted from reference 61 is given.

				The state of the s	OF THE OWN														T	AB	LE 1	1 1	957
					SITION D	DATA	· · · · · · · · · · · · · · · · · · ·	 		\vdash		MAXIM	UM ARE	A		SUN	SPOT I	MEAN D	ATA			MA	JOR
Serial No.	Sunspo MT.W.	t Number Green,	Category	McM Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Um	b. Whole Spot	Po	sition	Gr. Day	Flare ^Δ T		rea Whole Spot	Mt. W Mag. (Gr. Day	A Umb.	rea . Whole Spot	Zuri Cla
15	12216	17927	15, L 16	3899	S14	264	March 26,32	12221 12216 12230	11	181	1447	S14	£50	March 22,42	-7 -10	171	1133	lβρl	34	29 Apr. 02	149	991	E
16	12225	17934	L	3908	N28	268	26,06	12225 12231 12239	-	100	639	N28	W62	31.41	i	34	241	dβ l	5			•	
17	12235	17935	17, L	3907	S15	219	29.79	12232 12235 12228	12	91	734	S 16	W72	April 04.39	+1	38	240	dβℓ	14	03	110	682	E
18	12238	17943	L	3914	S 23	131	April 05.41	12250 12238	-	84	562	S 23	E13	04.39		34	201	lßl	23				
19	12245	17952	L	3919	N21	127	05.74	12245	-	139	815	N21	W45	09.11		60	351	dβpl	22				
20	12254 12258	17954	19, L	3923	S 22	43	12.12	12254 12258	14	115	937	S 23	W70	17,58	+6	112	665	lopl dß	33 14	11	97	544	E
21	12259	17956	18	3916	S 27	106	07.30	12259 12262 12241	13	46	369	S 26	W40	10.58	+2	35	237	dβр	12	8	52	270	D
22	12261	17958	L	3920	N26	111	07.00	12261	-	62	516	N26	w57	11.34		49	332	dβl	18				
23	12285	17976	20, L, M 21	3941	S16	261	22.87	12285	15	128	1000	N28	E66	17.58	+1	70	432	lβγd			_ 128 :	1000	E
24	12297	17988	L	3953	S17	193	27.99	12297	-	79	502	S18	E47	24.30		57	338	$eta_{P}\ell$	14				
25	12299	17990	L	3956	S05	166	30.04	12299	-	68	560	S04	E64	25.35		43	245	lβpl	20				
26	12315	18004	L	3969	S 25	117	May 03.76	12315	-	91	499	S 25	w 20	May 05.32		69	376	dβpℓ	18			•	
27	12318	18006	L, M	3972	S 28	23	10.86	12318	16	178	1270	S 28	W17	12.34		175 1	1057	lßyl	23				
28	12324	18008	L, M	3974	N12	16	11.36	12324 12326	17	237	1713	N11	w 30	13.54		216 1	415	lβyl	30				

TAINT .	301		-13-6	JOKING 1737	DETUDN SEQUENCE	GREENWICH DESCRIPTION
LARE DAY I	ATA			DISK PASSAGE DATA	RETURN SEQUENCE Greenwich	GREEN WOLL 2 250 July 113
ch Mag. ss Class.	Н	Posi	tion	Days Seen, Positions Seen, Zurich Class., Mag. Class., Magnetic Strength	and/or MT.W.	
- (βρ) βρ	14	N18 N18	W75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12016	A large stream, of which the intermediate spots grow and gradually coalesce with the leader to form a large composite spot, which is the only surviving component at the limb. A composite spot, slowly disintegrating. After a few days, other small spots appear, forming a stream. The whole group is dying out as it reaches the limb.
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A small spot when first see, developing into a stream led by a fairly stable regular spot. The intermediate spots become the largest component, but do not survive to the west limb. A composite spot, which by January 22 divides into two and
αp (αp)	24	S 27	E60 W21 W53 W83	Jan. 13 E68 W83 H H H H H H H H H H H H H H J - - ap (ap) ap ap \(\beta_p\) (\beta_p) - ap (ap) (ap) - 24 - 26 17 15 - 29	12048	begins to die out.
- - -	-	N16 N16 N16	W27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12040	A regular spot until January 22, when other spots begin to appear and coalesce with it to form a large composite structure.
				Jan. 18 E80 D D E E E E E E D D D C J βρ (β) (β)		A cluster, soon becoming a stream of three fairly stable spots.
x	4	N14	E 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A stream, with a brief maximum on January 29.
-	-	S 22	W08	Feb. 3 Feb. 13 W81 A B D D D C C A C A A (X) $\beta_{\mathcal{P}}$ ($\beta_{\mathcal{P}}$) ($\beta_{\mathcal{P}}$) ($\beta_{\mathcal{P}}$) $\beta_{\mathcal{P}}$ ($\beta_{\mathcal{P}}$) $\beta_{\mathcal{P}}$ - $\alpha_{\mathcal{P}}$ ($\alpha_{\mathcal{P}}$)		A small stream of changing spots.
				Feb. 14 Feb. 25 W79 A B A A A B C E E G - $\beta_{\mathcal{P}}$		Intermittent. A few small spots until February 16 (Mt. Wilson 12143); on February 20, new spots appear (Mt. Wilson 12150) and the whole quickly develops into a bi-polar, group.
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A stream, undergoing considerable changes. The leader eventually becomes a regular spot.
- *	•	N14	W37	Feb. 22		A few small spots, rapidly developing into a bi-polar group. On February 27 other spots appear to form a stream, which appears to be declining as it passes from view.
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A stream of normal type.
βρ	22	S 21	E30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A stream, growing rapidly from a few tiny spots first seen on March 10. The leader at first divides but by March 20 becomes a regular spot. The follower alsoundergoes changes and is dying out when the group reaches the limb.
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A stream, in which the three principal components are regular spots. The whole group is dying out as it reaches the limb.

2.2-1

TABLE II CATALOGUE OF IMPOR

				poetro	ON DATA		т				м	AXIMUM	I AREA			SUNS	SPOT N	IEAN D	ATA			MAJ	OR I
			<u> </u>					A11 C-045	Dlama Comial	Ilmb	Whole	Posi		Gr.	Flare		rea		/ilson	Gr.	Α	rea	Zui
Serial No.	Sunspot N MT.W.	Vumber Green.	Category	McM Plage	Lat. I	Long, C.	.М.Р.	All Spots in Plage	Plage Serial No. Table III	omb,	Spot	POSI		Day	ΔT	Umb.	Whole Spot	Mag. C	п. н	Day	Umb.	Whole Spot	Cl
1	12054	17803	2,L,M 3	3808	N19	272	Jan. 02.74	12054	2	293	2089	N18	W62	Jan. 07.46	0 -1	228	1351	lByl	35	Jan. 07 08	293	2089 1747	F F
2	12068	17814	1, L	3813	S 24		09.55	12079 12066 12074 12075 12068 12080 12076 12081	1	135	979	S 23	E79	03.41	-3	57	368	lßpl	13	06	85	508	н
3	12075	17816	L	3813	S16	184	09.44	Same as	2	96	540	S15	E02	09.28		59	354	dB\$	15				
4	12085	17829	4, L 5 6 10	3820	S 27	61	18.77	12086 12096 12085 12087 12107 12099	3	94	636	S 27	E17	17.43	+3 -3 -6 -8	96	496	lopl	29	14 20 23 25	89 123 87 43	557 523	H H
5	12089	17833	7, L 8 9	3823	N17	18	22.05	12089 12093 12094	4	203	1581	N16	W55	26.28	+3 +2 +2	126	778	lapl	34	23 24 24	126 152 152	844	H
6	12095	17838	L	3824	S16	344	24,62	12095	-	103	742	S17	E56	20.30		70	458	lβ	15				
7	12114	17850	11, L	3830	N15	257	31.20	12109 12110 12114 12113	5	52	504	N15	E23	29.37	-2	26	160	dapl	10	31	32	183	С
8	12122	17860	12	3843	S 21	159	Feb. 07.65	12121 12122 12123	7	63	211	S 22	E02	Feb. 07.44	-1	21	104	dê ş	10	Feb 08	32	194	i c
9	12143 12150	17875	L	3856	80И	10	18.99	12140 12143 12150	-	148	729	N08	W58	23,30		37	209	d Bed dBed	2 2 20				
10	12144	17877	L	3855	S 22	7	19.25	12139 12144	-	88	688	S 22	W01	19.38		65	458	dβpl	16				
11	12154	17884	13, L	3863	N14	289	25.17	12157 12154 12152	9	95	512	N14	E12	24.31	-4	59	348	dβρd	27	28	76	6 455	5 F
12	12159	17887	L	3866	N32	248	28.26	12159	-	132	935	N33	w26	Marc 02.35		88	640	dβp	l 22				
13	12191	17911	14, L	3888	S 21	41	March 15.97	12202 12207 12191 12204	10	111	. 783	S 21	₩06	16.46	5 +3	86	522	ί βρί	2 26	Ма 13		1 58	2 (
14	12213	17924	L	3897	S17	301	23.52	12213 12214	-	80	5 502	S16	E14	22.42	!	55	329	lßpl	ℓ 23				

2.2-1

2.

(Continued)

FLARE DAY DATA	DISK PASSAGE DATA	RETURN SEQUENCE GREENWICH DESCRIPTION
ch Mag. H Position s Class.	Days Seen, Positions Seen, Zurich Class., Mag. Class., Magnetic Strength	Greenwich and/or MT.W.
βρ 28 S14 W40	Mar. 20	A large, fairly stable stream of normal type.
	Mar. 21	A few tiny spots, which develop into a stream of normal type by the time they reach the limb. Zurich class for period 3/21 through 3/24 probably Mt. Wilson 12219, Greenwich 17928.
(β) - S16 W55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Intermittent, At first a few small variable spots. On April 1, a composite cluster appears.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A pair of composite spots, developing from one or two small spots when first seen at the east limb.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A pair of small spots.
(αρ) - S21 E06 (β) -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A regular spot when first seen on April 5 (Mt. Wilson 12254). On April 7 other spots begin to appear immediately south of it (Mt. Wilson 12258) and by April 15, the group becomes a stream led by a regular spot.
(X) E26 W13	Apr. 7	A cluster of spots, developing rapidly from a single spot on April 7.
	Apr. 8 Apr. 13 $\Xi 19$ W77 B D D D D - (X) β $\beta \rho$ (β) β (α) - 19 18 - 9 -	A bi-polar group, developing rapidly from one or two small spots first seen on April 8.
N28 E66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17934 A composite spot, slowly breaking up and dying out.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A stream, in which the leader becomes a composite spot and is the last to survive.
	Apr. 24	A bi-polar group, which becomes a stream of normal type. The group is dying out as it reaches the limb.
	May 2	A stream of normal type, appearing suddenly near the central meridian. From May 7, only the leader and follower are left.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A long stream of normal type, in which the spots following the leader assume regular outline. As the group approaches the limb it is led by a pair of regular spots.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A large stream, led by regular spot. The intermediate spots coalesce and form an elongated composite spot, which however, breaks up again as it approaches the limb.

2.2-2-

																		'	BLE			_
				POSITION	N DATA						N	MAXIMUM	AREA		SUN	SPOT I	MEAN DA	ATA			М	AJO
Serial No.	Sunspot MT.W.	Number Green,	Category	McM Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb,	Whole Spot	Positi	on Gr. Day	Flare	Ar Umb	ea . Whole Spot	Mt. Wi		Gr. Day	Ar Umb.		
44	12417	18073	27, L, M	4024	N21	174	June 22.87	12415 12417	25	245	1231	N21	Jun E72 17.:		170	921	lByl	39	June 24	180	900	I
45	12426	18078	L	4030	S 21	143	25.21	12426 12435	26	341	2334	S 21	E11 24.	32	317	2016	lβρί	37			•	
46	12434	18084	28, L 30 31 32	4039	N11	76	30.23	12433 12434 12445	27	109	606	N11 1	E39 27. 3	-1 -3 -5	92	537	la pl.	35	28 30 July 02	83 89 121	*442 606 600	Н
47	12443	18087	L	4043	S12	61	July 02.24	12443	28	143	840	S12	E65 27.	-8 36	131	693	lβp1.	33	03	108	500	н
48	12449	18092	29, L, M	4044	S 29	8	05.39	12449	29	271	1836	S 30	E65 30.	31 0	184	1354	lyl	35	June 30		1836	F
49	12451	18094	35	4046	N13	7	05.51	12453 12447 12451	30	72	486	N13	Jul E36 02.		44	242	ℓβ+°£	19	July 08	21	141	E
50	12456	18096	33	4048	N13	338	07.69	12456	31	37	285	N13	E79 01.6	7 -3	25	137	lpfa	13	04	48	268	r
51	12462	18099	L	4051	S11	303	10.28	12462	32	102	596	S12	E65 05.	35	46	288	Lβd	26	İ			
52	12473	18106	L, M	4061	S 32	246	14.60	12473	33	111	769	S 32	w 22 16.	29	74	530	dγl	25				
53	12491	18121	36, L 37	4065	N30	144	22.32	12489 12494 12481 12487 12491	34	119	563	N31	E09 21.	60 0	64	288	lßfl	23	21 21	119 119		
54	12494	18131	L	4065	N12	186	19,20	12511 Same as	53	44	707	N13	w80 25.	36	28	150	дβг	4				
55	12496	18122	39,L 40 41	4070	S 23	139	22.71	12507 12 4 96	36	111	568	S 23	w08 23.	33 +1 -1 -4	74	428	lβρί	29	22 24 27	90 81 48	443 504	1
56	12500	18127	L	4073	N32	32	24.05	12500	-	107	544	N32	W17 25.	36	53	304	аβрв	20				
57	12503	18128 18139	38, L L	4075	N10 N14		25.89 26.2	12503 12520	35	181 93	1256 821	N10 N13	Au	ζ.	122	784 5 150		26	22	181	125	3
58	12513	18136	L	4082	S 28	15	Aug. 01.10	12513 12525 12514	37	95	507	S 27	W 54 05.	33	58	308	<i>l</i> αρ <i>l</i>	26				
								L		L												

2.2.4. 0

(Continued)

LARE DAY DA	ATA		DISK PASSAGE DATA	RETURN SEQUENCE	GREENWICH DESCRIPTION
ch Mag.	н	Position	Days Seen, Positions Seen, Zurich Class., Mag. Class., Magnetic Strength	Greenwich and/or MT.W.	
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A long stream, in which the follower, a regular spot, is the most stable member and alone remains by May 21.
•			May 14 May 18 W24 W77 A B C E D D D D D D D D D D D D D D D D D D		A bi-polar group, forming near the west limb.
•			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17987	A regular spot with some companions until May 24.
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A stable regular spot, with a few tiny companions on May 28.
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A variable group until May 29. On the next day a stream of normal type takes its place.
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A regular spotuntil May 28, after which it begins to break up.
			May 29 June 10 E81 : W79 - G H H H H H H H C C - (α) $\frac{d\rho}{d\rho}$ ($\frac{d\rho}{d\rho}$) $\frac{d\rho}{d\rho}$ (\frac		A slowly-diminishing regular spot with a few variable companions until June 7.
: βf 1	.4	S18 W17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A stream, growing on the disk, in which the intermediate spots become the largest component. The whole group is dying out as it approaches the limb.
: :			June 2 June 14 E76 W80 C E E E E G G G H H H H - (\mathbf{X}) $\beta \rho$ $(\beta \rho)$ $\beta \rho$ $(\beta \sigma)$ $\beta \rho$ $(\beta \sigma)$ $\beta \rho$ $(\beta \sigma)$ $(\beta \rho)$ $(\beta$		A composite spot, splitting into two parts; the leading portion becomes a stable regular spot while the following part soon breaks up and dies out.
			June 2 June 9 E18 W81 A B B C D D 3ρ βρ β (β) βf (β) (α) - 2 10 14 - 16		A compact stream forming on the central meridian.
•			June δ June 13 W15 W73 A B D E G - (X) (X) βρ βρ (β) (β) - 12 12 -		One or two small spots, growing rapidly into a composite structure as the group approaches the limb.
	2	NIE SOO	June 8 June 20 E76 F F F F F E E D (\mathbf{x}) (β) $(\beta$		A stream, led by a large composite spot which is breaking up and diminishing as it approaches the limb.
ap 21		N15 E58	June 13 E83 C C C D D D D D C C - (X) ip ap ap (ap) ap ap ap ap ap ap ap ap (ap) (ap)		A stream in which the follower, a regular spot, is the only stable member.
a	3	S37 E23	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	At first a bi-polar group. On June 18 intermediate spots appear to form a stream consisting of a leading regular spot followed by two large composite spots.
ар 2' (ар) -		N16 E30 N16 W36	June 15 E84 - J J J J J J J J J J J J J J J J J J		A close pair of spots, soon becoming regular in outline and slowly diminishing.
-3			2	.2-3	2

TABLE II 1957

					POSITIO	N DATA	Α				M	AXIMUM AREA	\		SUNS	SPOT N	IEAN D.	ATA			MAJO
Serial No.	Sunspot MT.W.	Number Green.	Category	McM Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb.	Whole Spot	Position	Gr. Day	Flare △T	Ar Umb.	ea Whole Spot	Mt. Wi Mag. C	lson I. H	Gr. Day	Are Umb. V	a 7 Whole Spot
29	12330	18013	L	3979	S11	297	May 17.40	12330 12331 12351 12332	18	97	559	N11 E50	May 13.54		58	341	lbfl	23			
30	12333	18016	L	3982	S17	360	12.6	12333	-	89	712	S17 W77	18.32		56	351	dßfl	20			
31	12346	18025	L	3984	S10	204	24.40	12354 12345 12346	-	79	508	S11 E65	19.38		50	266	lapl	16			
32	12353	18032	L	3991	N22	161	27,61	12353	-	97	508	N22 E28	25.44		90	472	lapl	35			
33	12356	18037	L	3987	N22	194	25.18	12347 12356	19	109	721	N25 W78	31.31		43	263	₫₿₽	13			
34	12357	18035	М	3993	S 23	133	29.78	12363 12357	•	59	427	S24 W20	31.31		48	306	Lγl	15			
35	12365	18041	L	3997	S17	59	June 04.37	12376 12365 12377 12379	-	73	553	S17 E10	June 02.55		67	428	lβpt	30			
36	12368	18043	22, L, M	3996	S17	86	02.31	12360 12368	20	112	787	S18 W17	03.64	0	55	364	dβγl	13	June 03	112	787
37	12373	18049	L	4002	S18	7	08.29	12378 12398 12373 12410 12389	-	121	671	S18 E46	04.64		90	540	lBp l	30			
38	12375	18050	L	4001	N10	74	03.30	12375	-	77	550	N10 WŠÍ	09.37		41	288	JBL	15			
39	12383	18055	L	4003	S13	18	07.50	12383 12385 12382 12396	-	51	764	S30 W78	13.30		44	410	dpl	11			
40	12387	18057	L, M	4011	N32	283	14.60	12411 12387	21	172	1487	N32 E68	09.37		133	1007	lβ _Υ l	23			
41	12407	18067	23, L	4022	S16	218	19.56	12403 12406 12407	23	104	500	S15 E15	18.32	+3	67	346	lapl	26	15	59	329
42	12409	18068	24. L	4021	S 37	197	21.11	12409	24	328	2049	S38 W18	22.54	+3	244	1499	lßl	27	19	256	1393
43	12415	18071	25, L 26	4024	N16	8 186	21.96	12415 12417	25	167	1062	N16 E74	16.55	-3 -8	161	844	lapl	26	19 24	171 163	

2.2-3

(Continued)

R FLARE DAY DATA	DISK PASSAGE DATA	RETURN SEQUENCE GREENWICH DESCRIPTION
ich Mag. H Position ass Class.	Days Seen, Positions Seen, Zurich Class., Mag. Class., Magnetic Strength	Greenwich and/or MT.W.
(β _Y) - N21 W17	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A large regular spot with a composite structure in: mediately south of it which breaks up and disappears by June 28. Maximum area 1231 on both June 17 and 18. On June 18, umbra area was 288.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A large typical bi-polar group.
αρ 29 N11 E26 βρ 34 N11 W01 (X) - N10 W26 γ 18 N10 W40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A regular spot, with a number of small unstable companions until July 2.
	June 26 July 8 E76 W82 - G G G G G G G G G G G G G G G G G G	A large stable regular spot with one or two small following companions.
γ 16 S30 E65	June 29 July 11 E77 W76 E E E E E E E E E E E E E E E E E E E	A large composite spot undergoing little change until July 5, after which it begins to diminish in area and becomes elongated.
(βf) - N13 W35	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A stream of normal type, developing rapidly in a few days and then breaking up and dying outbefore reaching the limb.
βf 14 N13 E40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A group of small variable spots.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A stream of three small regular spots, which die out as they approach the limb.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A large composite spot, developing rapidly from a tiny spot first seen on July 10.
βf 18 N31 E09 βf 18 N31 E09	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A regular spot, of which the umbra is crossed by a bright bridge until July 19, after which the spot becomes composite and slowly diminishes.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A group forming near the west limb immediately south of Group 18109, to which it finally becomes attached.
βγ 29 s23 E04 βγ 19 s23 w 20 βρ 7 s23 w 65	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18078 A regular spot with a number of variable companions.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A stream of normal type, developing from a pair of small spots first seen on July 19.
eta_γ 18 N10 E47	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A stream, led by a large composite spot which is the most stable member. A group forming near the west limb.
	July 26 Aug. 6 E70 W64 J J J H H H H H H H J J αρ αρ βρ αρ βρ αρ 114 16 17 23 23 24 26 25 26 18 12 -	A regular spot, with some northern companions from August 2 onwards.

2.2-4 (2

				POSITIO	ON DATA			T				MAXIMU	M AREA			gr	NSD∩™	MEAN	DAT	Δ !			AAJ
Serial No.	Sunspo MT.W.	t Number Green.	Category	McM Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb	Whole Spot		ition	Gr. Day	Flar	e	Area		Wilso	n G	y Umb	Area	
73	12633	18219	L	4155	S 23	83	Sept. 19.4	12633 12630	-	84	567	S 24	W65	Sept. 24.33		35			ℓ 1	Τ		Sp	ot
74	12634	18216	73, L, N 74	f 4152	N10	60	21,21	12623 12634	46	129	849	N10	W29	23.47	+2 +2	91	519	<i></i> βγ.	<u> </u>	Se 21 21	ept.	6 49 6 49	1
75	12635	18217	L, M	4159	N15	341	27.12	12640 12635 12636 12642	47	128	847	N15	E47	23.47		96	608	lβγ.	' 25	;			
76	12636	18223	75 76	4159	N20	338	27.42	12662 12644 12649 12652 12656		47	264	N19	E52	23.47	-3 -7	40	221	lapl	30	26	49 44		
77	12648	18229	L	4162	N16	294	30.75	12648 12663 12673 12661	48	138	1333	N16	E44	27.36		130	904	IBPL	30				
78	12654	18236	L	4165	N27	269	Oct. 02.62	12654	49	157	945	N27	W 10	Oct. 03.48		96	533	IBp I	25				
79	12659	18239	L	4167	S 22	247	04.31	12659 12674 12668	-	137	612	S 23	E26	02.38		122	547	la pl	32				
10	12665	18240	L	4175	S16	225	05.94	12664 12665	-	76	666	S14	E70	Sept. 30.65		65	374	$\ell\beta_P$	18				
1	12669	18247	77	4173	S 40	194	08.33	12669	51	24	282	S 41	W15	Oct. 09.52	0	22	142	aβfa	11	Oct 09	24	282	
2	12670 12676	18245	L	4172	N13	203	07.60	12670 12679 12676 12680	50	96	628	N13	W25	09.52		49	282	da pd d ßl					
3	12675	18252	L	4179	N20	158	11.05	12675	52	171	964	N20	E33	08,46		126	672	lBpl	28				
ŀ	12684	18258	L .	4185	S17	104	15.11	12684	53	147	1042	S18 1	E22	13.38		97	682	lB pl	16				
	12687	18260	78 .	4186	N10	10	16.41	12692 12687 12705 12695 12702	54	49	249	N10 E	E 4 0	13.38	0	24	117	dβd	13	13	49	249	Ι
1	2689	18262	79, L 4 80 81 82 83 84	1189	S 24	70	17.70	12721 12689 12694 12696	55	454 2	480	S24 F	E14	16.67	0 0 -3 -4 -5	845 2	074	lßfl		16 16 19 20 21 23	454 454 330 399 366 216	2480 2074 2373 2023	FFFFF

2.4-6

Continued)

ontin									ov D	6646	E DAT	`Δ					RETURN SEQUENCE	GREENWICH DESCRIPTION
ARE DAY	DAT	'A		 							E DAT		C1= ::				Greenwich	
Mag. Class.	Н	Pos	ition								Seen, 2	Zurich gth	Class	··, ———			and/or MT.W.	
				July 27 E74	,							_				g. 8 V73 H	18092, 18055	A moderate-sized composite spot.
				- H (X) d - 1	x	α	α		Υ	Н 7 26	Ε Υ 28		Υ	н а 21	H (a)	α (α) - Aug. 10	12449	A stream of normal type, in which the leader is the most
βρ •	16	N27	W 50	July 26 E81 - (\alpha) \begin{align*} \int \text{-} \\ \i	8 - 3 ₀ 13	Ε βρ 19	Ε βρ 21	Ε βρ 19	Ε βΥ 21	Ε βγ 23	Ε βρ 24	Ε βγ 17	Ε βρ 18	Ε βρ 22	Ε βρ 16	W80 Ε C (βρ) (βρ)		stable component.
•				ap 1	A 3	A -		β	βf .	D βf 14	Aug. W C (β) (88 -						Intermittent. A tiny spot on August 10 and 11 (Mt. Wilson 12547). On August 14, a new group appears (Mt. Wilson 12554) and is growing as it passes from view.
(β) βΥ	- 22		E05 W20	Aug. 1 E73 C	E		E	E	Ε (β)	E	E βγ	Ε βρ	G βγ	$_{\beta_{\gamma}}^{G}$	V73 G βρ		12503	A group of composite spots which soon develop into a stream of normal type. The rear component is dying out as the group reaches the limb.
				14 Aug. 2 E75	17	19 C β _P	22 D βρ	26 D βρ	D βρ	22 D (βρ)	22 D βρ	25 С ВР	17 C βρ	16 D βf	, a	ot. 2 W78 (βf)	12505	A pair of small regular spots until August 26. On the next day more spots appear to form a stream which undergoes changes from day to day.
Y Y Y	18 18 21	S 29 S 29 S 29		Aug. 2	15	16 E	17 E	16 E	14 G	- G	14 G	17 G	12 G	14 H	W H	Н	18137, 18092, 18055	A composite spot, preceded by a few companions. By August 30, it has become regular in outline and alone remains by September 3.
α α	25 24 24	S 29 S 30 S 30	E00		Y 18	, (¹ / ₂)	18	21	22	25	(a) -	24	28	26	(a.) -	(a) -	12514, 12449	
βγ βγ βγ	24 24 24 16			Aug. E82 - (X)	E βγ	E (含 ₄)	Ε βγ 22	Ε βγ 24	Ε βγ 24	Ε βγ 24	F (角)	F βγ 19	F 3)	F β 20	E (C)	Sept. 7 W79 Ε -) (β) (x)	18141	A group consisting of three composite spots which gradually extend longitudinally. After September 4, it begins to diminish rapidly.
βγ (β) βγ	17	N2:	W70 E01	Aug. E83		-						F	F	F	Se F	ept. 6 W79 E		At first a small regular spot, which slowly changes into a composite spot. After August 30, there is a rapid increase in area. A composite structure, developing from a small spot first seen on August 26. By September 2, the leading portion is
(βρ) (βρ) βρ	19	N1 N1 N1		(or)	D β _ξ 22	D (βρ) -	C βρ 19	C βρ 19	D βρ 17	Ε βγ 17	Ε (β _Υ)		β _Υ 21	βγ 16		·) (β)		changing into a regular spot and is the sole survivor at the limb. A large stream which, although decreasing in area, undergoes
βγ (βγ) βγ (βγ)	25 - 22 -	N1 N1 N1		Sept. E88 - X 15	. 4 Ε β _Γ 17	Ε βρ 17	Ε βγ 20	Ε βγ 26	Ε βγ 25	Ε (β _Υ)	E Ø 7 22	E (βγ	Ε β _γ 19	E βհղ 14	D β- 12	Sept. 1 W7 C γ (X) (α	7	very little change throughout its passage. Two small regular spots, one at the rear and one in the centre of the group. retain their identity throughout.
(β _Υ)	-	14.1	1 422	Sept E31 B Bf	. 4 С В	E βf	Ε β 15	Ε β 21	Ε βρ 20	Е (Вр	E	t. 12 W65 E (β)						A stream, developing rapidly from a tiny spot.
·				3 Sept E44 Α βρ		9 Ε βγ	Ε (βρ	Ε , βγ	G - (βρ	- G) βρ	J αρ	Sept J ap	:. 16 W79 - (ap)					A stream, growing rapidly from a small spot. The leader, which is composite structure, alone remains by September 14.
(β)	-	s	16 E13	13 Sep E44 A β	17 t. 8	19 Ε (β)	E βρ	19 E (ββ	- Ε ρ) β	15 G β	G βf	G (ع)	- t. 17 W75 G (X)				A rapidly growing stream until September 13. On the next day the intermediate spots have disappeared, leaving two regular spots.
(BY) BY BY BY (BY)	3: 3: 3:	5 N 5 N 5 N	23 E28 23 E13 23 E13 23 E13 23 W01	2	14 t. 13	Е Вр	25 Ε βι	Ε (β	26 F	26 F (岛-	24 F	- F r βε	Fβ	F (2	Y F			A few small spots, rapidly growing into a large stream of normal type. The leader, a large regular spot, is the most stable component. The follower develops into a large composite spot by September 20, but begins to break up as the group approaches the limb.
(β _Υ) βρ	1		723 W01 710 E48	Sej E7 D B	pt. 14 5 Ε β _Ι	Ε - β			ρ (β		G γ β 6 2-	y B.	γα	I ρα		7 H xp)		A stream, in which the leader, a regular spot, becomes composite in structure by September 20. The following part breaks up and dies out by September 23.

2.2-5 3

TABLE II 1957

				POSI	TION DA	ГА						MUMIXAN	AREA			SUN	SPOT N	IEAN D	ATA			M.	AJOF
Serial No.	Sunspot 1	Number Green.	Category	Mc M Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb.	Whole Spot	Posit	tion	Gr. Day	Flare ΔT		ea Whole Spot	Mt. W Mag.	Vilson Cl. H	Gr. Day	Are Umb.	ea Whole Spot	Zur Cla
59	12514	18137	L, M	4082	S 30	356	Aug. 02.49	12514		163	1092	S 30	W14	Aug. 03,65		126	845	$l_{\gamma}l$	28				
60	12516	18141	42, L	4083	N26	331	04.42	12516	38	131	775	N27	W 50	08,32	0	102	629	lβpl	23	Aug. 08	131	775	E
61	12547 12554	18161	L	4093	S14	231	11.98	12544 12534 12547 12554	-	31	683	S15	w75	17.53		14	150	dßd dßfl	2 13				
62	12563	18171	43, L 44	4112	N17	99	21,95	12562 12563 12567 12582 12583	39	183	1113	N17	E16	20,62	-1 -3	126	800	lßpl	26	21 23	140 167	918 902	
63	12573	18177	L	4117	S 24	30	27.21	12573	-	95	650	S 25	W52	31.40		56	347	l Bpl	16				
64	12579	18181	45, L, M 46 48 50 55 56	4125	S 29	335	31.33	12587 12588 12578 12579	41	171	807	S 29	E2 6	29.31	+1 +1 0 -2 -4	101	601	lyl	28	28 28 29 31 Sept. 02 02	95 95 171 113 101 101	774 774 807 682 626	E E G
65	12580	18182	47, L, M 49 51 58 59	4124	N25	329	31.83	12585 12580	42	383	1726	N25	E33	29.31	0 -1 -2 -5 -8	210	1313	Ιβγl	23	Aug 29 30 31 Sept 03 06	383 294 227		E E
66	12581	18183 18185	52, L, M 53 54 57	1 4124		333 326	31.50 Sept. 01.06	12581 12586 12590		4 6 70			W79 W02	Sept. 06.32 01.28	+6 +5 +5 +3	61 54	459 348	lßy (€ 20	Aug 31 Sep 01 01 03	62	497 497	E
67	12596	18194	60, L, M 61 63 64 65	1 4134	NII	194	11.01	12614 12610 12596 12611	43	190	1365	N11	E61	06.32	-3 -4 -5 -6	136	850	lBy I	€ 26	09 10 11 12 12	159 121 112 132 132	872 664 701	E E
68	12597	18191	L	4136	S 24	249	06.84	12597	-	195	1635	S 24	w 60	11,42		106	775	4B L	20				
69	12601	18195	L	4138	S 1:	3 202	10.43	12601	-	99	676	S13	E00	10.46		56	351	dßpl	! 18				
70	12606	18197	62, L	4141	S16	3 187	11.58	12606	44	216	1063	S16	w 25	13,42	+3	129	715	4/3 L	26	10	95	44	4 E
71	12622	18209	67, L, 1 68 69 70 71	M 4151	N2:	3 85	19.30	12637 12632 12622	45	411	2214	N24	W13	20,36	+2 +2 +2 +1		1530	dβγ.	£ 36	18 18 18	376 376 376 396	148: 5 199: 6 199: 6 199: 5 212	8 1 8 1 8 1 2 1
72	12623	18211	72 66,L	4152	NO	9 .76	19.98	12623 12634	46	182	2 1178	N10	E48	16,32	+1	150	1020	IB _P I	? 30	19		212	

22.5

(Continued)

₹ FLA	RE DAY	DATA							DISK	PASSA	GE D	АТА				RETURN SEQUENCE	GREENWICH DESCRIPTION
urich lass	Mag. Class.	н	Positio	on .						itions agnetic			h Cla	ss.,		Greenwich and/or MT.W.	
					Sept. 20 W14 A A (X) βf	В _{Вр} 18	C βρ 14	D	. 25 V77 J								A few growing spots.
e 6	βγ βγ	26 26	N11 W N11 W		Sept. 19 E28 A B - β - 11	Ε β _Υ 26	Ε βγ 26	Ε βγ 31	Ε βγ 21	G βρ 15	Sept. V G (βρ)	27 v85 - (X)					A stream of rapid growth and decline.
					Sept. 20 E85 - Ε (X) βγ - 12	Ε βρ 20	Ε βγ 20	Ε βρ 24	Ε βγ 24	Ε βf 25	Е Вр 35	Ε (βf)	Ε (βf)	Ε (βf) 20	Oct. 3 W80 Ε D C βγ βγ (βf) 15		A stream of normal type, in which the rear component becomes a large composite spot which is the first to die out.
	α <i>ρ</i> α <i>ρ</i>	25 16	N20 E N20 W		Sept. 21 E77 J J αρ βρ 12 23	C βρ 25	J αρ 27	J ∝p 24	C ap 25	C ap 30	C (ap)	C (ap)	C «p 16	C ap 17	Oct. 3 W79 C C α _p ' - 14 -	. 12581	A stable regular spot, with occasional companions.
and the second					Sept. 24 E83 - Η (X) βρ - 22	Η <i>βρ</i> 30	Ε βρ 25	Ε (βρ)	Ε (β _P)	Ε βρ 27	Ε βρ 26	Ε βρ 25	H - -	Η αρ 15	Oct. 6 W75 H H op (ap) 15 -		A large composite spot which slowly becomes elongated as its area diminishes.
					Sept. 27 E71 B D βρ (βρ) 13 -	D (βρ)	D βρ 22	E βρ 19	E ခိုင္င	G -	G βρ 23	G βρ 25	G βρ 24		et. 8 W78 H (ap)		A stream in which the leader, a large regular spot, is the only stable component.
a management a	م				Sept. 28 E76 H H (αρ) (αρ)	н ар 2 6	н 30	H ∝ρ 28	H - -	н ∝р 29	н ар 32	Н ор 28	Η αρ 24	Η ορ 17	Oct. 10 W80 H H (ap) (ap)	18191	A stable regular spot, with a small companion from September 30 to October 4.
					Sept. 29 E80 - J (α) βρ - 16	C βρ 19	С Вр 18	C -	C β 10	D	C βρ 14	C βρ	С Вр	С <i>Вр</i> 5	Oct. 11 W71 B A		A stream, led by a regular spot until October 3; after this the whole breaks up before reaching the limb.
	βf	4	S41 W	V15	Oct. 2 E72 - Β (β) -	С Вр 5	Β βf 9	С Вf 12	C Bf	C βf	С	Β (βf)	B -	Oct	t. 13 W61 B		A few small spots which coalesce into an elongated structure for a day or two and then break up again and die out.
					Oct. 1 E76 - Α (α) (αρ)	A -	В ар 5	А ар 3	Β βρ 12	D βf 13	E Af	Ε βf 17	Ε (β)	E -	Oct. 13 W77 E D βp - 13 -	18192, 18156	A small spot until October 5 (Mt. Wilson 12670). On the next day other spots appear (Mt. Wilson 12676) to form a group consisting of two fair-sized composite spots.
					Oct. 5 E74 C D Bf B 8 16	Ε βρ 21	Ε βρ 21	Ε βρ 28	Ε (βρ)	E -	Е <i>Вр</i> 24	G -	G (βρ)		t. 16 W61 G		A stream of normal type, in which the leader is a stable regular spot and the follower a composite spot. The latter is slowly dying out as it approaches the limb.
					Oct. 9 E74 B C β (β _P)	E - -	Ε βγ 17	E -	Ε (βρ)	Ε (βρ)	Ε βρ 16	Ε βρ 14	Ε βρ 13		t. 20 W69 C -		A stream, led by a regular spot. After October 12, intermediate spots join up with leader and follower to form a composite structure. After October 17, the group begins to die out.
	-	-	N10 E	40	Oct. 10 E76 B B (X) -	C βf 8	D -	С (β)	C (βf)	C ~ 14	B (X)	Oct.				18211	A group of small unstable spots.
	βf βf βf - - βf)	29 29 27 - -	S24 E S24 E S24 W S24 W S24 W S24 W	:14 /22 /35 /49	Oct. 10 E82 - E (X) -	Ε βρ 15	F - -	F (<i>β</i> f)	F (βf)	F βf 29	F βf 24	F βf 27	F βf 27	F - -	Oct. 2 W8 F E E - (βf) (βf) (3	<u>-</u>	A stream, in which the intermediate and follower spot after October 14 join together to form a large composite spot, while the leader slowly dies out.
							<u> </u>										

21-6

TABLE II 1957 (

				POSIT	ION DAT	Α					M	MAXIMUM AREA			SUNS	POT N	MEAN DA	ГА			MAJ	OR I
Serial No.	Sunspot :	Number Green.	Category	McM Plage	Lat. [ong.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb,	Whole Spot	Position	Gr. Day	Flare	Ard Umb.	ea Whole Spot	Mt. Wils	on H	Gr. Day U	Area Imb. Wh	Zu note C	rich lass
87	12698	18269	L	4188	N26	68	Oct. 17.84	12685 12688 12698	-	101	695	N27 W73	Oct. 23.45		33	199	dßl	13				
88	12716	18283	L	4197	N13	323	25.78	12707 12722 12710 12716 12735	56	73	584	N13 W58	29.42		39	253	βpl	16				
89	12717	18284	L	4201	S 22	322	25.89	12717 12724 12736	<u>-</u>	111	774	S 23 E 75	20.42		60	393	lßpl	15				
90	12718	18287	85,L	4203	S 12	301	27,50	12718 12728	57	84	703	S12 W25	29.42		75	510	lßpl	17	Oct. 27	81	590	G
91	12730	18299	L	4207	S 15	243	31.86	12752 12730	58	87	523	S15 E59	27.45		51	342	l B fd	17				
92	12732	18300	86, L, M 87 88	4207	S 24	240	Nov. 01.12	12732 12734		177	1181	S 27 E35	29.42	-4 -7 -8	106	765	lyl	20	Nov. 02 05 06	59		H H B
93	12733	18292	Ĺ	4202	N21	298	Oct. 27.67	12725 12733 12719 12720	-	185	1404	N21 W22	29.42		102	654	dßpl	22				
94	12738	18304	L	4208	N26	241	Nov. 01.02	12729 12738	-	179	904	N25 W45	Nov. 04.46		94	543	dß £	8				
95	12745	18312	L	4218	S17	173	06.18	12744 12745 12749	59	68	758	S17 W71	11.53	3	80	549	lßpl	16				
96	12763	18326	90, L 91	4230	N19	89	12.56	12762 12772 12763	60	93	804	N20 E80	06.3	5 -7 -9	41	290	lel	16	13 15	31 24	226 145	J C
97	12767	18333	L	4233	М08	72	13.88	12767 12775	-	194	1149	N08 W46	18.3	6	76	472	JBl	19				
98	12768	18327	89	4237	S 22	59	14,81	12776 12773 12768	61	31	310	S 23 E 57	10.5	1 0	22	181	lad	10	10	31	310	н
99	12774	18332	L	4236	S 20	84	12.97	12774	-	100	593	S19 W18	14.3	10	66	410	6 d/3ℓ	21				
100	12792	18354	L	4245	S 26	13	18.3	12792	-	85	526	S 26 W 65	23.4	10	58	32	4 d×l	(10)				
101	12779	18338	92, L	4246	N2	8 353	19,82	12779 12790		87	706	N27 W47	23.4	40 (5€	38	1 lßpl	· 18	23	87	706	E
			<u>.</u>		·									_								

2.11-7

2. [

57 (Continued)

AJOR FI	ARE DA	YDAT	`A	DISK PASSAGE DATA	RETURN SEQUENCE	GREENWICH DESCRIPTION
	Mag. Class.		Position	Days Seen, Positions Seen, Zurich Class., Mag. Class., Magnetic Strength	Greenwich and/or MT.W.	
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A stream, in which the leader is the only stable member.
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18308	A regular spot, with a few close companions from November 22.
G	(α ρ)	-	S15 E28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A regular spot followed by some small variable spots.
E	(β) β f	22	S19 W40 S18 W50	Nov. 25 Dec. 5 E60 W77 B C C D E E E E E E E $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\beta \rho$ $\delta		A bi-polar group, developing from a few small spots first seen on November 25. By December I, the leader has be- come a large composite spot and alone remains at the west limb.
E	-	-	S17 W28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18312 12749 12745	A large composite spot followed by a few small companions. On December 1, it begins to break up and the leading nucleus becomes a stable regular spot.
				Nov. 28 Dec. 6 E31 W77 A C D D D E E D D - βρ (βρ) (βρ) (βρ) βρ (βρ) - 12 18		A bi-polar group, in which the leader is the most stable member.
В	-	-	N17 W31	Dec. 3 Dec. 7 W32 W79 A C D D - β (β) (αf)	18332	A small group, forming near the west limb. A stream of small changing spots.
			Not Seen	7 - 9 9 - 3 Dec. 6 Dec. 10 E64 E11 A B A B B βρ (β) - (β) - 6		One or two small spots.
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A stable regular spot, followed by a composite spot which is slowly diminishing during transit.
E E E E	- Y Y (Y)	23 23 23	N19 E77 N18 E50 N17 E21 N17 E21 N17 E08	Dec. 14 E77 E E E E E E E E E E E G G 18 23 - 21 18 16 18 10		A large cluster of spots, in which the rear portion becomes a large composite spot while the leading nuclei diminish and become two small regulars.
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A long stream, in which the leader, a regular spot, is the only survivor by December 25.
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A composite spot, followed by a few small companions until December 20. On the next day the group consists of two composite spots which are joined together for a day or two and then begin to separate and die out.
F				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A composite spot, followed by a small fairly stable regular spot.
Е	β <i>p</i>	23	N23 E44	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A stream of normal type.

				POSITIO	ON DATA						N	MAXIMUM ARE	A		SUNS	POT M	EAN D	ATA			
Serial No.	Sunspot :	Number Green.	Category	M ^C M Plage	Lat.	Long,	C.M.P.		Plage Serial No. Table III	Umb.	Whole Spot	Position	Gr. Day	Flare ² T	A: Umb.	whole Spot	Mt. W Mag. (ilson Cl. H	Gr. Day		Area . Wi S
102	12781	18345	L	4247	N17		Nov. 21.04	12780 12781	63	127	500	N17 W31	Nov. 23,40		47	270	- Apl	20			
103	12784	18349	L	4257	S13	276	25.72	12784	-	112	511	S13 E42	22.50	ļ	69	386	lbfl.	21			
104	12788	18353	93. L	4263	S 15	263	26.70	12787 12788 12796	65	86	551	S15 W24	28.57	+4	66	398	lspl	21	Nov 24	. 79	3
105	12800	18357	95, L 96	4269	S18	222	29.79	12800 12810	66	319	1644	S18 W60	Dec. 04.44	+2 +1	140	858	dßpl	21	Dec 02 03	198 290	14 13
106	12808	18361	97, L, M	4288	S17	176	Dec. 03.30	12808 12815 12827 12828	67	147	1295	S18 E52	Nov. 29.43	-6	106	856	lyl	20	05	55	5
107	12814	18365	L	4271	N15	210	Nov. 30.67	12823 12805 12814	-	68	580	N15 W64	Dec. 05,52		62	399	dßpl	17			
108	12830	18374	L	4293	S 13	205	Dec. 01.00	12830	-	49	502	S14 W71	06.42		25	216	dpl	(15)			
109	12832	18377	99	4295	N18	89	09.87	12832	69	23	151	N18 E56	05.52	-7	14	81	lpd	9	12		1
110	12840	18385	98	4301	S 34	70	11.30	12840	70	6	51	S34 E52	07.29		4	26	₿d	5	12		
111	12851	18395	L	4313	S 15	329	19.00	12851 12861 12862	72	178	979	S15 E34	16.40		139	828	lppl	36			
112	12855	18398	100, L,M 101 102 103 104	4314	N18	313	20.20	12855 12863	73	171	1434	N17 E08	19.40	+5 +3 +1 +1	128	939	lpyl	22	14 16 18 18	53 193 180 180	3 1 3 1 3 1 1 1
113	12865	18400	L	4316	N23	299	21,39	12865	-	95	581	N23 E51	17.39		49	269	lspl	22		•	
114	12868	18401	L	4317	N15	279	22.76	12868 12867 12866	-	77	724	N15 W0	7 23.28		67	456	lapl	22	2	•	
115	12869	18407	Ĺ.	4319	S 26	257	24.42	12870 12869 12890	74	127	933	S 25 E 26	5 22.3 0)	81	636	I is R	21			
116	12874	18408	105, L	4321	N23	255	24.58	12877	75	175	1507	N23 W3	5 27.28	+6	170	1170	lspl	27	21	18	0 1

ontinued)

ARE DA	AY DA	TA						DISK	PASS	AGE	DATA				RETURN SEQUENCE	GREENWICH DESCRIPTION
Mag. Class.	н	Pos	ition					en, Pos					lass.,		Greenwich and/or MT.W.	
				Oct. 13 E60 A A - (X)	C (B)	С <i>Вр</i> 3	C βf 11	С Вр 14	C βρ 13	p - -	D -	D ßf	Oct. V D Bf	24 v86 - X		A stream of small spots until October 20, after which the group grows fairly rapidly as it approaches the limb.
	•			Oct. 20 E74 B B	С (д)	D βf 11	D ₿γ 8	D (A) (С Вр)	Ε (βρ)	Ε (βρ)	D βρ 17	Oct. V C (βρ)	31 v78 C		A stream of small changing spots until October 26, after which the group consists of two composite spots.
	•			Oct. 20 E79 C D	D (A)	Ε β 15	Ε <i>βρ</i> 13	D (A)	D (β)	D (β)	D (β)	D αρ 15	Oct. D (αρ)	. 31 W78 B		A group of spots which join together to form a composite spot on October 24 but which soon breaks up again.
(βρ)	-	S12	W02	Oct. 22 E66 G G (\(\beta_P\)) \(\beta_P\) - 17	G βρ 19	G (β _P)	G (βρ)	G (පි _ව)	Ε (β _P)	Η βρ 18	H (X)	H - -	ον. 1 W67 H (αρ)			A composite spot, with one or two small companions.
				Oct. 25 E78 - D (β _P) (β)	Ε (βf)	Ε (βf) -	Ε βf 16	G (βf)	G -	G (βf)	G -	G -	G (β _P)	Nov. 6 W70 G B (βρ) _		A stream in which the follower, a regular spot, is the most stable member. This, however, begins to break up on November 2 into a number of small spots before dying out.
- (Y) (Y)	-		W15 W55 W68	Oct. 25 E81 - E (X) (X)	E (X)	E (X)	E Y 21	G (∼)	G -	G (<u>Y</u>)	H - -	H - -	н (<u>~</u>)	Nov. 6 W66 Η Β (γ) (γ)	18239, 18191	A large composite spot, which by November 3 begins to break up and is dying out as it passes from view.
				Oct. 26 E22 B D	Ε (β _P)	Ε βρ 22	Ε (βρ)	E -	G (βρ)	Nov V G -	7. 3 V85 - -					Intermittent. A tiny spot on October 23. On October 26, a pair of small spots appear which grow rapidly into a bi-polar group.
				Oct. 28 E48 A B (\beta) \beta f - 9	D (βf)	E	Ε (βρ)	E	E -	Ε (β)	Ε (βρ)		ov. 7 W78 - (a)			A stream undergoing minor changes.
				Oct. 30 E81 - D (X) -	Ε (βρ)	E -	E -	G (βρ)	G (βρ)	G βρ 3	G αρ 17	G ∝ρ 14	G αρ 13	Nov. 11 W63 G G ap (ap) 8 -		A stream in which both the leader and follower become regular spots and alone remain by November 7. On November 9, the follower begins to change into a composite spot.
-	:		W07 W36	Nov. 6 E80 - Η βρ βf 11 13	Н β 15	Η βγ 15	Η β 17	D お 16	C 2	C -	J - -	J - -	J βf 4	Nov. 18 W70 J A βf (αf) 2		A stream of normal type. Only the leader and follower remain by November 15.
				Nov. 10 E46 A B $\beta \rho$ $\beta \rho$ 4 2	Β (β _P)	D -	D -	E ~	Ε β _Υ 15	Ε βγ 20	Ε β 16	Е	7. 20 W81 - (\alpha f)			A small spot until November 12. On the next day other spots appear and these rapidly develop into a bi-polar group.
α	6	S 23	E57	Nov. 8 E79 - H (X) a	н ∝ 7	G a 6	G a 11	H -	В	B -	Nov.	. 17 W37 A			18262, 18219	A composite spot, which breaks up and dies out rapidly after November 13.
				Nov. 9 E47 A B - βγ - 11	Ε βf 18	Ε βf 19	E	E -	E -	D	Nov	₩76 J			12689. 12633	A stream of rapid growth until November 12. The leader, a regular spot, is the only survivor by November 17.
				Nov. 21 W43 A C	Nov.						•	-				A small group forming near the west limb.
(B)	-	N27	W47	Nov. 14 E72 J J	- Ј ¤р 19	- J β _P 18	ς β _Υ	С <i>В_Р</i> 13	D βρ 15	Ε (β)	Ε (β)	Ε (β)	C	. 25 W76 C (a,p)		A regular spot until November 16, after which other spots appear to form a cluster.
	Ā	_		<u> </u>												-l

				POSI	TION DA	TA					M	IAXIMU	M AREA	
Serial No.	Sunspot MT.W.	Number Green.	Category	McM Plage	Lat.	Long.	C.M.P.	All Spots in Plage	Plage Serial No. Table III	Umb.	Whole Spot	Posi	tion	Gr. Day
117	12878	18411	L	4328	N26	240	Dec. 25.70	12898 12878	76	181	1024	N26	E57	Dec. 21,29
118	12882	18413	L	4323	S19	227	26.76	12906 12892 12882 12884 12886	77	84	591	S 20	W28	24.50
119	12894	18419	L	4315	S05	309	20.50	12894 12873 12864	-	118	829	S06	W75	26,26
120	12885	18415	L	4325	N14	218	27.45	12885	-	87	540	N15	E67	22.30

ZURICH CLASSIFICATION OF SU

	1			
Α.	12235 MAR. 29	17 ; 12245 APR. 4	12315 MAY 2	:·*
B.	12235 MAR 30	12122 FEB. 4	12144 FEB. 13	ý. T
c,	12285 APR 24	12297 APR. 30	12407 JUNE 15	D
D.	12159 MAR. 4	Q 12297 APR. 24	12407 JUNE 18	125 AU
E.	12159 FEB. 26	12855 DEC. 18	12808 NOV. 29	
F.	12689 OCT. 16	12622 SEPT. 18	12426 JUNE 21	SON BEAUTY OF THE PROPERTY OF
G.	12443 JULY 4	12353 MAY 29	12373 JUNE 7	Ø,
Н.	12089 JAN: 21	12353 MAY 27	123/3 JUNE 10	S. S. S.
J.	. P 12285 APR 26	12779 NOV. 17	(2) 12415 JUNE 19	()

2.4-90

TABLE II 1957 (Continued)

							- :	JOD EX	ADEDA	17 D 4 7		- $ -$					1	DISK	PASSA	GE
	SUNSP	OT M	EAN DA	TA			MA	JOR FL	ARE DA	YDAI	Α	-+								
are ΔT	Are Umb, W		Mt. Wi Mag. C		Gr. Day	Ar Umb.		Class	Mag. Class.	н	Position					Days Mag	Seen, Class	Posi s., Ma	tions S gnetic	Seer Str
	128	862	lß pl	29									Dec. E78 - (X)	19 E 15	E ∂ <i>P</i> 21	Ε βρ 24	Ε βρ 29	Ε βρ 18	Ε (β ρ)	Ε (β)
	55	392	l p l	14									Dec. E85 - (X)	20 c ~p 15	C ~ <i>P</i> 13	. Е Ү 18	Ε β 12	Ε (β)	Ε (β)	E (p
	82	518	d B A	(15)									Dec. W54 J βρ 6		Dec. 2 W75 D	6				
	69	414	la p1	29									Dec. E81 - 00 22	21 H 26	Н э ор 5 29	н • р 14	Η (ορ)	Η (ορ) -	Η (ορ) -	1
													ορ 22	26	29	ு p 14	(op) -	(op) -	(op)	

NSPOTS

417 INE 20

12368 MAY 30	systematic structure of the group. The spots are without penumora.
2225 AAR. 27	A bipolar group of spots without penumbra, the long axis of which is directed roughly E-W, concentration of spots on the E & W ends.

Sunspot composed of a small single spot or a very small group of spots, mostly of short duration, concentrated in a region of 2-3 Sq. Deg. with no

Bipolar group, the largest spots having penumbra.

Very large bipolar or complex group. Dimension in longitude at least $15\,^\circ$.

Large bipolar group, without small spots between the two major spots. Dimension in longitude at least $10^\circ\!.$

Unipolar spot with penumbra, sometimes with complicated structure. Diameter > 2.5°.

Umipolar spot with penumbra, round shape, Diameter $< 2.5^{\circ}$.

Large bipolar group showing a complicated structure. The two major spots each having a penumbra. Numerous small spots between the major spots. Group at least 10° distance in longitude.

Bipolar group like B but with at least one main spot with penumbra.

2. П -9

DAT	ГΑ					RETURN SEQUENCE	GREENWICH DESCRIPTION
i, Zu rengt		Clas	s.,			Greenwich and/or MT.W.	
2) (c	G > ρ)	G 0,0 18	н ° р 12	De H			A composite spot, followed by some variable companions.
l) (D β 12	D β 6	J: D (β)	В	(β)	18357	A large composite spot which begins to break up by December 28 and is dying out as it passes from view.
	12	Ū	-	-	-	12000	A group forming near the west limb.
Ŧ :	н	н	н	J	Jan. 2 W78	18365	A regular spot, of which the umbra divides into three parts for a few days.
P	ρ 10	(α ρ)			ο) (α ρ) -	12814	

ILSON MAGNETIC CLASSIFICATION OF SUNSPOTS

I. UNIPOLAR SPOTS

- The flocculi is farily symmetrically distributed on the preceding and following sides of the center of the group.
- $\alpha\rho$ The center of the group precedes that of the surrounding flocculi.
- $\propto \hat{f}$ The center of the group follows that of the surrounding

II. BIPOLAR SPOTS

- eta Both members are of approximately equal area.
- $\beta \rho$ The header is the principal member.
- βf The trailer is the principal member.
- βy The trailer and header are accompanied by small components of opposite polarities.

III. Multipolar spots

 Jerregularly arranged spots of opposite polarities which cannot be classified as bipolar spots.

TABLE III. CATALOGUE OF PLAGE DATA FOR 1957

The data in this catalogue include plage regions associated with major solar flares, plages with a cental meridian passage area equal to or greater than 10,000 millionths of the solar hemisphere, plages with an average brightness equal to or greater than 3.5 during disk passage, and plages where 30 or more flares of all importance equal to or greater than 1, during disk passage. The categories are indicated in column 4 by the sumbols L = large, B = bright, and N = 30 or more flares. These data were obtained from the McMath-Hulbert unpublished plage catalogue. (Ref. 13)

- Column 1 Catalogue Serial Number.
- Column 2 McMath Plage Number.
- Column 3 The Major Flare or Flares Serial Numbers and/or Plage Category.
- Column 4 Mean Longitude During Disk Passage.
- Column 5 Mean Latitude During Disk Passage.
- Column 6 Greenwich Date of Central Meridian Passage.
- Column 7 Life in Rotations.
- Column 8 Date First Seen.
- Column 9 Number of Days Seen.
- Column 10 Average Maximum Area.
- Column 11 Intensity. Three regions are used, E/C/W, where:
 - $E = E90^{\circ}$ to $E45^{\circ}$
 - $C = E45^{\circ} \text{ to } W45^{\circ}$ $W = W45^{\circ} \text{ to } W90^{\circ}$

The intensity is estimated on a scale of 1 = faint to 5 = very bright.

- Column 12 Number of Flares During Disk Passage E/C/W
 - $E = E90^{\circ}$ to $E45^{\circ}$
 - $C = E45^{\circ} \text{ to } W45^{\circ}$
 - $W = W45^{\circ} \text{ to } W90^{\circ}$
- Column 13 Total Number of Flares During Disk Passage.
- Column 14 Life Histories. If the plage region is the return of a plage or plages from the previous rotation or rotations, the McMath plage numbers are given in the return sequence.

ASSOCIATED SUNSPOTS - COLUMNS 15-18

- $\frac{\texttt{Column 15}}{\texttt{Plage}} \; \underbrace{\texttt{Mt. Wilson Sunspot Numbers of All Spots Covered by the}}_{\texttt{Plage}}$
- Column 16 Mt. Wilson Mean Magnetic Classification of the Spots
- Column 17 Field Strength in Units of 100 gauss. A bracket indicates an estimated value.
- Column 18 Days Seen.

								,													
S	, Days s Seen	May 5-17 6-6	13-22 13-17 21-21 13-24	19-29 24-31	June 26-7 30-8	15-15 7-20	11-19 12-20 17-24	12-19 13-24 13-25	14-28	15-27 15-29	18-1 25-26	24-2 24-6 27-28	26-8	28-11	30-9 28-10 29-11	July 1-12	4-15	10-20	15-22 16-25 12-27 14-24 15-28	31-31 19-1	21-22 17-28
SUNSPOT	Intensity 100 Gauss	30	23 7 13	18	23	23	111 9 71	4 13 26	27	39	37	35	33	35	17 21 19	13	56	25	2 4 0 1 3 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	(1) 26	29
ASSOCIATED SUNSPOTS	Mag. Class	RBy R dapd	lapt dxd dxd lapt	d Bpd dBl	lapl	dafd	120 190 198	1 Bd 18 pl	181	lapl	LAPL	100 Lapl	IBAR	lyl	dbl Lope Lbfl	PFGY	PBJ	dyl	dad Rape Rape Rape Apped Apped	dad	dxd 18pl
A.	No. Wil. No.	12324 12326	12330 12331 12351 12332	12347 12356	12360 12368	12411 12387	12397 12402 12420	12403 12406 12407	12409	12415 12417	12426 12435	12433 12434 12445	12443	12449	12453 12447 12451	12456	12462	12473	12489 12494 12481 12487 12491	12520 12503	12507 12496
LIFE HISTORY	Plage No.'s Previous Rotations	3932	Part of 3940 Part of 3847 - 3861 Part New Part New	3966	New	New	3964	3984 3947* 3907 (See No. 12) *Old and dying plage has a resurgence at WLP	3986	3989 3991 In position of 3958	3983 New in position of 3962	4001	New	Mostly new	3999 3974 3932	New	4009,3979 (See No. 18)		4023 4987 (See No. 19) 4024 (See No. 25) 4028 4000 4029 Part of 3991 in position of 3958	4039 (See No. 27)	4030 (See No. 26)
	Total Flares	41	22	35	36	17	56		53	64	88	43	20	56	61	16	4	14	47	54	31
DATA	No. Flares E/C/W	4/34/3	4/14/4	5/6/24	2/24/10	5/11/1	5/22/1	4/3/0	25/26/2	9/38/17	8/10/10	10/33/0	1/11/2	11/10/5	5/33/23	7/8/1	1/3/0	-/13/1	13/49/12	15/18/21	1/20/10
DISK PASSAGE PLAGE DATA	Intensity No E/C/W I	3.5/3.5/4	3.5/3.5/2.5	x/3/3	3/3/2.5	3.5/3.5/3	3/2.5/2.5	3/3/2	3.5/3/3.5	3.5/3.5/3.5	3.5/3.5/3.5	4/4/3	4/3.5/3	3.5/3.5/3.5	3.5/3/3	3.5/3.5/3 7	3.5/3.5/3 1	-/3.5/3.5	4/3.5/3 1	3.5/3.5/3.5	2/3/2 1
DISK PA	Average Max. Area	10000	7000	0009	2200	11000	11000	5500 3	7000	9000	9000	6000	5000 4	30000	5000	6000	4000	1800	17000 4	4000 3	7000 2
	Days A Seen A	>12 10	. 01<	> 10	>12	14 11	я :	13 5	13 7	>12 9	;	13 6	>12 5	14 9	13	13 6	13 4	11 1	16 17	14 4	14 7
H	1st I Seen S	May 05 >	· ·	<u>^</u>		80 80			14	15 ~	18	24	25	83	. 28	July 01	40	0.1		19	15
TION	Life Rotations	2	4,1	8	н		63	-	8	8	63	61		1	4.	-	4.	1	£, 4,	3	e
PLAGE POSITION	Date C.M.F. R	May 11.5	17.5	25	June 1.5	14.5	18.5	19.5	21	22.5	25.5	3¢	July 02	0.5	4.5	80	10	14.5	20.5		8
PLA	Mean Lat. C	N13	S16	N18 2	S 22 S	N30 1	S18 1	S15 1	835 2	N18 2	S 20 2	N12 3	S12 0	S 27 0	N12	N14	S13	S32 1	N21 24	N16 26	S 21 22
	Mean 1 Long.	88		196	s 16	285			199 S	179 1	139 S	79 1		13 S	202	-	U)	247 S	N 168	N 56	148 S
NOL	Category	L,B,N	æ	z	z	L,B	ı		B,N	B,N	m	B,N	æ	æ	z	Д	В	щ	L,B,N	n,a	z
DENTIFICATION	Major Flare Ser. No.				22			23	24	25,26,27		28,30,31, 32		59	33	33			36,37,	38	39,40,41
Ä	M ^C M Plage No.	3974	3979	3987	3996	4011	4018	4022	4021	4024	4030	4039	4043	4044	4046	4048	4051	4061	4065	4075 3	4070
	Serial No.	-11		19	20	12	22	53	24	25	92	27	82		30	31	32	E	34	35	36
_																					

TABLE III. CATALOGUE OF IMPORTANT PLAGES DURING 1957

П	s - T	-			10 10	10.10		m = 0	9	9 2 2	2 - 2 2	- m	6 9	رم مر ام	5 5		5
w	, Days s Seen	Jan. 8-9 1-9 6-9 6-15	6-15 6-15 14-16 Dec.27-8	Jan. 14-19 18-22 14-25 14-15 25-25 19-25	15-25 16-25 17-22	25-25 25-25 31-5 31-5	31-6 31-5 31-10 10-10	Feb. 2-13 3-13 3-10	4-16	24-26 22-27 21-22	Mar. 13-15 15-15 10-21 14-15	22-27 19-1 27-28	27-29 28-4 26-26	Apr. 7-13 8-8 1-12	5-15 6-15	19-27	May 3-17
ASSOCIATED SUNSPOTS	Intensity 100 Gauss	2 15 10 15 13	6 (4) 35	8 (3) (5) 8 5 8 8	34 (20) 5	(5) 10 10	28 28 28	13 10 5	35	27 3	26 (1) (1) 2 26 (1) (1)	34	2 14 (2)	12 (2) 14	33	(20)	23
SOCIATED	Mag. Class	88888 88888 88889	1887	42 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	100	dapl	Lape	0 8 p &	IBAL	900 0 9 8 pc	dad Axd ABPE dad	epol dod dod	dapd dpL dxb	4 B L 4 x d 8 B p d	lapl	LByd.	1876
ASS	ji.	& & & & & & & & & & & & & & & & & & &	3 2 1	36 35 37 39	33 34	00 10 14	17 18 19 33	22 23	24	57 54 52	02 07 91	12221 12216 12230	12232 12235 12228	12259 12262 12241	12254 12258	12285	12318
	Mt. Wil. No.	12079 12066 12074 12075 12068	12080 12076 12081 12081	12086 12096 12085 12087 12107 12107	12089 12093 12094	12109 12110 12113 12113	12117 12118 12119 12133	12121 12122 12123	12124	12157 12154 12152	12202 12207 12191 12191	122	122	122	122	122	123
LIFE HISTORY	Plage No.'s Previous Rotations	3755 3757		3772 3789 3686 3642 3772 3789 3642	3774		3 3788 [3755			3808	3853 3822 3800 3173 3743 resurgence of an old plage 3857		3872 3838 3813 (See No.1) Resurgence	3881 3847 Part of 3884 3849 3820 (See No. 3)	i8 (See No. 10)	0.00	61
		3788	New	3797	3801	3808	3813	New	New	3830	385	New	387. Res	Par	3888	3900	3939
	Total Flares	27	28	36	37	9	œ	14	o	4	12	31	25	24	41	36	42
E DATA	No. Flares E/C/W	6/19/2	5/12/11	2/25/9	4/31/2	2/4/0	0/7/1	1/9/4	1/1/1	0/3/1	3/5/4	5/22/4	0/8/17	2/19/3	21/16/4	13/19/4	14/23/5
DISK PASSAGE PLAGE DATA	Intensity E/C/W	3.5/3/3.5	x/4/3.5	3/3/2	3.5/3.5/3	3/3/3	3.5/3/2.5	3/3/2.5	3/3.5/3.5	3/3/3	3/3/3	3/3.5/3.5	3/3.5/x	3/3/3	x/3.5/x	3/3/2.5	3.5/3,5/3.5
DISK P	Average Max. Area	19000	2000	0006	16000	8500	11500	7500	1000	3200	2000	8500	5200	5500	0009	0006	10000
L	Days Seen	15	13	13	>12	14	14	13	13	es	14	> 11	11 <	13	> 11	15	13
	1st Seen	Jan. 02	1	;	15	23	29	Feb. 01	40	19	Mar. 09	ł	23	Apr.	;	15	May 04
SITION	Life Rotations	e e		Q	e	N	4			e	1,(6)	1	9	3.9	۲-	63	2
PLAGE POSITION	Date C.M.P.	Jan. 9.5	2.5	19	23	30	Feb. 05	80	10.5	25	Mar. 16	26.5	30.5	Apr. 7.5	12.5	23	May 11
ā	Mean Lat.	S 22	N20	S 28	N20	N20	S 20	S 18	S 26	N18	S 22	S 15	\$13	S 24	S 23	N28	S 28
	Mean Long.	183	275	88	ري 	273		145	117	291	=	262	509	104	38	259	21
ATION	Category	L.B	В	×	L.B,N		ы	-	щ			B,X			z	z	L.B.N
DENTIFICATION	Major Flare Ser. No.	-	2,3	4,5,6,10	7,8.9	11		12		13	14	15,16	17	18	19	20,21	
ā	Mc M Plage No.	3813	3808	3820	3823	3830	3838	3843	3844	3863	3888	3899	3907	3916	3923	3941	3972
_	Serial No.																

2. 田 -3

TABLE III 1957 (CONTINUED)

	Days	26-6 Aug. 2-7 27-8	28-10	15-20 15-27 17-18 26-26 26-26	23-4	28-31 29-31 24-3 24-6	27-5 25-7 25-6 27-2 31-31	Sept. 11-11 9-9 3-17 9-9	8-17	21-23 20-22 13-26	13-25	21-28 20-2 20-2 22-2 29-29 22-2 24-24 25-4	23-6 29-30 Oct. 4-6 28-28	26-7	1-6 7-10 6-12 7-10	1-12
SUNSPOTS	Intensity 100 Gauss	26 7 28	23	26 26 (2) (2)	15	28 (S 2 1	20 20 3		26	35.56	30 31	25 4 26 26 26 27 13 (1) (1) (1)	30 (3) (4)	25	4 7 7	11
ASSOCIATED SUNSPOTS	Mag. Class	lapt døft lyl	1001	Lad Oaple dad dad dad	lbfl	7 × 8 × × × × × × × × × × × × × × × × ×	6 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	dbd dad dbd	ABB	4 8 pd	RBPL dBYL	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RBPR dxd dxd	1808	dapd dapd dal	P+&P
	Mt. Wil. No.	12513 12525 12514	12516	12562 12563 12567 12582 12583	12577	12587 12588 12578 12579	12585 12580 12581 12586 12590	12614 12610 12596 12611	12606	12637 12632 12622	12623 12634	12640 12635 12636 12642 12662 12644 12649 12652	12648 12663 12673 12661	12654	12670 12679 12676 12680	12669
LIFE HISTORY	Plage No.'s Previous Rotations	4044 (See No. 29)		(See No. 35)		(See No. 37)	(See No. 38) 4048	Mostly new & 4023 3887 (See No. 19) Part of 4065 4024 (See No. 25) 4028 4000 4029 Part of 3991		(See No. 39)		(See No. 42)			(See No. 43)	
	8	4044	4057	4078	4092	4082	4083 4084 4095 4096	4098	New	4112	4114	4124	4145	New	4134	New
	Total Flares	55	42	43	23	19	110	œ E	44	83	22	63	119	14	30	17
GE DATA	No. Flares E/C/W	5/41/9	4/27/11	8/19/16	14/8/1	8/46/7	14/70/26	9/22/8	0/40/4	13/62/8	16/35/4	13/40/10	12/7/0	0/12/2	1/19/10	5/1/5
DISK PASSAGE PLAGE DATA	Intensity E/C/W	2.5/3.5/3.5	3.5/3.5/3.5	3.5/3.5/3.5	3.5/3.5/3.5	3.5/3.5/3	3.5/4/3.5	3.5/3.5/3.5	1/3/2.5	3.5/4/3	3.5/4/3.5	3.5/3/3	3.5/3.5/3	3.5/3.5/3.5	2/3/2.5	x/3/3
DISK	Average Max. Area	7600	2000	22000	4500	8000	21000	0006	3000	7800	0009	19000	0009	3600	7500	5200
	Days Seen	14	14	41	13	14	41	41	12	> 12	14	15	15	14	4.	=
	1st Seen	July 26	28	15 15	23	23	25	Sept.	96	;	22	ର	23	92	0ct.	20
SITION	Life Rotations	0	63	4	81	m	3,2	ο •	1	ю	N	£,4,	89	-	m	-
PLAGE POSITION	Date C.M.P.	Aug. 1,5	5.5	22.5	58	30	31.5	Sept.	11.5	61	20.5	ž .	2	2.5	7.5	80
PL	Mean Lat.	S 28	N23	N14	N12	S27	N22	N12	S17	N19	NI1	N20	N17	N28	N14	s 40
	Mean Long.	o	330	85		353	333	207	188	68	69		290		204	198
TION	Category	X, E	B,N	L,B,N	щ	B,N	L,B,N	B,N	z	N,B	B,N	L,'N	m	ш	z	
DENTIFICATION	Major Flare Ser. No		42	43,44		45,46,48, 50,55,56	47,49,51, 52,53,54, 57,58,59	60,61,63, 64,65	62	67,68,69, 70,71,72,	66,73,74,	75,76				77
ĐΕ	McM Plage	4082	4083	4112	4122	4125	4124	4134	4141	4151	4152	4159	4162	4165	4172	4173 7
	Serial No.	37	38	38	-	4	24	£	44	5	46	47	84	49	09	51

	T	Days Seen	4-16	9-19	12-16 10-18 17-17 12-16 15-19 23-24	10-24 12-24 12-19	18-30 23-28 19-30 22-30 27-27	22-1 25-25	4-4 25-5 25-6 26-1	30-11 30-11 1-12	5-12 9-17 5-18	11-16 9-12 8-16	16-25 21-24	16-23 16-26	18-28	20-26 20-2 23-30	24-3 27-27	26-10 29-3 Dec. 2-10 2-2	
	LIS		Oct.		ਜ ਜਜ ਜਜ ੇ 6		- 0 - 0 0	0.0	Nov.	en en		1	7 7		-	MMM		Dec.	
	SUNSPO	Intensity 100 Gauss	28	16	13. 2. 9. (2) e s	29 17 15	13 6 17 16 (2)	17 (2)	(2) 17 20 2	15 16 20	19 8 16	2 4 10	18 (10)	14	6	(10)	21 (2)	20 3 8 (2)	
_	ASSOCIATED SUNSPOTS	Mag. Class	1601	1001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 ft	RAGE AXX	RAPL	1850	1001 1901 1901	1808 4808 192	dapd dpd Lad	RBP1 dx R	lapd	ьдь	lopd	d Apl	Lyk Spd Sak Sxd	
	AS	Mt. Wil. No.	12675	12684	12692 12687 12705 12695 12702 12721	12689 12694 12696	12707 12722 12710 12716 12735	12718 12728	12752 12730 12732 12734	12744 12745 12749	12762 12772 12763	12776 12773 12768	12779	12780	12783	12787 12788 12796	12800 12810	12808 12815 12827 12828	No Spots
	LIFE HISTORY	Plage No.'s Previous Rotations	4142 4101	New	4152 (See No. 46)	4155 In position of 4120	4159 (See No. 47)	New	4167 4136 4175 4147	4177 4141 (See No. 44)	New	4189 (See No. 55)	New	4197 (See No. 56)	4203	4207 (See No. 58)	New in region of 4210	4218 (See No. 59)	4220
		Total Flares	14	19	26	92	42	13	54	17	16	17	28	27	12	38	27	44	-
	DATA	No. Flares E/C/W	10/3/1	6/13/0	10/14/2	17/54/21	10/30/2	2/11/0	11/31/12	4/4/9	6/9/1	6/11/0	1/21/6	0/22/5	4/8/0	6/29/3	1/12/14	11/27/6	0/0/0
	DISK PASSAGE PLAGE DATA	Intensity E/C/W	4/3.5/3	3.5/3.5/3.5	3/2.5/2	3.5/3.5/3.5	3.5/2.5/2.5	3.5/3.5/3	3/3.5/3	3/3.5/3.5	3,5/3,5/3	3/2.5/2	3/3.5/3.5	3.5/3.5/3.5	3.5/3.5/3	4/3.5/2.5	3/3.5/4	3.5/3.5/3.5	1,5/1.5/x
	DISK P	Average Max. Area	2000	4000	8500	18000	12500	2000	18000	0099	11000	8000	7000	5200	5500	8500	2000	7000	1000
		Days Seen	>12	13	14	41	14	13	13	14	13	13	212	13	211	13	12	13	>7
		lst Seen	Oct.	60	10	10	18	21	25	30	Nov. 05	80	≤ 15	15	17	50	24	27	28
	TION	Life Rotations	ေ	1	က	8	ro	1	ო	က		e	1	9	81	4	1	4	2
	PLAGE POSITION	Date C.M.P. 1	Oct. 11	15	17.5	17.5	25.2	28	31.5	Nov. 06	12	14.5	20	21	24	27	29.5	3.5	S
	PLA	Mean Lat.	N18	\$17	N10	S 25	N20	S13	S 18	S17	N18	S 21	N26	N15	S15	S15	\$18	s 20	N39
		Mean Long.	158			73	327												
	TION	Category	В	æ		, L,B,N	Z, Z	æ	r,'r	æ	L.B		Ω	В	ф	B,N	æ	x,	
	DENTIFICATION	Major Flare Ser. No.			78	79,80,81, 82,83,84		85	86,87,88		90,91	68	85			93	95,96,	97	94
	DE	McM Plage	4179	4185	4186	4189	4197	4203	4207	4218	4230	4237	4246	4247	4255	4263	4269	4288	4282
	Н	Serial 1 No.	52	53	4.	55	26	52	28	50	09	19	62	63	49	65	99	67	89
	ш		1																

TABLE III 1957 (CONTINUED)

_										
	Days Seen	Dec. 3-11	6-9	6-7 6-13 10-17 13-13	12-24 17-17 17-20	13-26 17-17	17-28 17-30 23-23 19-30	18-31	25-31 19-31	28-28 23-23 20-1 21-21 21-26
SUNSPOTS	Intensity 100 Gauss	Ω 6	ß	5 22 17 (1)	36 2	22 (2)	11 21 (1) 18	27	16 29	(2) 4 14 (2) (10)
ASSOCIATED SUNSPOTS	Mag. Class	PØI	ВА	RAPE BPL DSFL DSFL	lBpl dxd dbd	18x	lapd 191 dapd dbl	1801	487T	dad LBR dad dad
	Mt. Wil. No.	12832	12840	12837 12838 12845 12852	12851 12861 12862	12855 12863	12870 12869 12890 12877	12874	12898 12878	12892 12882 12882 12884 12886
LIFE HISTORY	Plage No.'s Previous Rotations	4230	New	4233	New	New	4263 (See No. 65)	New	New	4269
	Total Flares	7	'n	13	13	43	24	04	13	21
GE DATA	No. Flares E/C/W	1/6/0	3/2/0	0/11/2	4/8/1	10/23/10	7/12/5	4/24/12	1/12/0	10/9/2
DISK PASSAGE PLAGE DATA	Intensity E, C, W	2/3/2	2/2.5/1	3/3.5/3.5	3.5/3/2.5	4/3.5/3	2.5/3/3	3/3/3	3/3/3	3.5/3/3
DISK	Average Max, Area	4000	2000	8500	11000	8500	14000	12000	15000	10000
	Days	13	11	13	14	14	13	14	13	13
	1st Seen	Dec. 03	90	04	12	13	17	18	61	20
PLAGE POSITION	Date Life C.M.P. Rotations	2	1	63	-	-	rb			61
AGE P	Jate C.M.P.	Dec. 9.5	10.5	Ξ	19	20	24	24	26	27
Id	Mean Lat,	N15	S 35	N08	S 14	71N	S 22	N22	N28	\$14
	Mean Long.									
DENTIFICATION	Major Flare Category Ser. No.	66	86	α	יי	100,101,102,B.N 103,104	u	105 L.N	IJ	٦
DE	McM Plage No.	4295	4301	4296	4313	4314	4319	4321	4328	4323
Г	Serial No.	69	02	12	72	73	4-	75	92	<i>tt</i>

TABLE IV. CATALOGUE OF IMPORTANT RADIO EMISSIONS FROM THE SUN DURING 1957

This table will include all important radio emissions from the sun that occur within an acceptable time of:

- (a) The major flares reported in Table I.
- (b) Events listed in Table VIII (Solar Activity Chronological Catalogue) that had important solar radio emission associations. This will include outstanding emissions (peak flux ≥500) at 2800 Mc/s or 200 Mc/s even though, only a sub flare, a minor flare, or no flare was reported at the time of the emission.
- (c) All reported spectral emissions of the Type II (slow drift bursts) and Type IV (broad band continuum).

Due to the period from approximately 0600 UT to 1300 UT when there is no sweep frequency patrol of the sun, we have included data from studies by Pick-Gutman (reference 44). Hakura and Goh, (reference 22) and others who have used radio emissions at single frequencies in both the meter and centimeter wave lengths to derive probable spectral emissions of the Type IV.

In order to make this phase of the catalogue as completed and useful as possible, we have included emissions for a wide range of frequencies from 9500 Mc/s to 167 Mc/s, and whenever significant fluxes were reported at low frequencies data are also included. These single frequency data have been taken from reference 63.

Normal observing hours of the solar radio observatories in both the discrete and sweep frequency programs are shown on page 2.IV-v.

All fluxes at single frequencies are reported in units of 10^{-22} Wm⁻² $(c/s)^{-1}$.

The following symbols, singly or in groups (reference 43), illustrated on page 2.IV-iv are used to describe single frequency reports of outstanding occurrences:

- S = simple rise and fall of intensity.
- C = complex variation of intensity.
- A = appears to be part of general activity.
- D = distinct from (apparently superposed upon) the general background.

- M = multiple peaks separated by relatively long periods of quietness.
- F = multiple peaks separated by relatively short periods of quietness.
- E = sudden commencement of rise of activity.
- ECD = a complex distinct disturbance with very sharp rise.
- CD = complex disturbance of moderately sharp rise.

Not all emissions reported in reference 63 at the time of the flare are included in the catalogue, and no general minimum flux has been used as a cutoff point. Occasionally more than one report at a given frequency is included.

In general the peak flux, if reported, is given. If the peak flux is not available, the smoothed flux is used, and indicated by enclosing the value in a bracket ().

If the peak flux is greater than the reported value, the recorded flux has been underlined.

A list of the observatories, their identification code, and normal operating times for each of the four quarters during 1957 is given on page 2.IV-v. Figures 2.IV-1 and 2.IV-2 show the observatories and normal operating times for the first and fourth quarters of 1957, respectively.

Table IV is arranged in three general columns.

- (a) FLARE, if any, associated with the radio emission.
- (b) RADIO EMISSIONS OF THE SPECTRAL TYPE
- (c) RADIO EMISSIONS AT SINGLE FREQUENCIES

The column headings together with any necessary explanations follows:

FLARE DATA - (Columns 1 through 7)

- Column 1 Date.
- Column 2 Beginning Time UT. If the start of the flare was observed, the time is underlined.
- $\frac{\text{Column 3}}{\text{time is underlined.}} \stackrel{\text{End Time UT.}}{\text{when the end of the flare was observed the}}$
- Column 4 Maximum Time UT. This value has been taken from reference 12 for the second six months of 1957 and unpublished data for the first six months.
- Column 5 Heliographic Position. The position of the flare is taken as the arithmetic mean of the values reported in the IAU Bulletin.

- Column 6 Importance. The method used for major flares has already been described in connection with Table I. The minor flares are reported as 2+, 2, 1+, 1 as the highest importance given reference 63, subflares are denoted with importance 1-. In a number of cases it will be noted that the flare importance given in this column will be greater than the importance given for the same flare in Table VIII, this difference in values is discussed in some detail in the description of Table I.
- Column 7 Flare and/or Event Serial Number. These are the serial numbers of the major flare in Table 2.I or the event number in the chronological catalogue Table 2.VIII, for the purpose of cross reference.

SPECTRAL EMISSIONS

Outstanding spectral emissions of Types I, II, III and IV are given in Table VIII. The entries in this table will be limited to emissions of Type II and Type IV reported by CSIRO Sydney (Syd) and/or the Harvard Radio Astronomy Observatory (Har) at Fort Davis, Texas.

We have also included spectal emissions of the Type IV that have been derived by Pick-Gutman (Ref. 44) or Hakura and Goh (Ref. 22) from single frequency observations. These derived Type IV emissions are particularly useful for the time period from approximately 0600 to 1300 UT when neither the Harvard nor the CSIRO sweep frequency observatories are in the sun light.

TYPE II SLOW DRIFT BURSTS (Columns 8 through 12)

Column 8 Beginning Time UT.

Column 9 End Time UT.

Column 10 Intensity.

Column 11 Frequency Range.

Column 12 Observatory or reference.

TYPE IV BROAD BAND CONTINUUM (Columns 13 through 17)

Column 13 Beginning Time.

Column 14 End Time.

Column 15 Intensity.

Column 16 Frequency Range.

Column 17 Observatory or reference.

RADIO EMISSIONS AT SINGLE OR DISCRETE FREQUENCIES (columns 18 through 24)

Selected frequencies between 9500 Mc/s and 167 Mc/s associated in time with the major solar flares, solar-terrestrial events, or spectral emissions are tabulated in a descending order of frequency with the following data.

Column 18 Frequency.

Column 19 Type.

Column 20 Beginning Time.

Column 21 End Time.

Column 22 Time of Peak Flux (No times of peak flux are reported during the first six months of 1957)

Column 23 Peak Flux (or smoothed flux)

Column 24 Observatory.

FIGURE 2.IV-1 SOLAR RADIO OBSERVATORIES NORMAL OBSERVING TIME DURING THE FIRST QUARTER 1957

2.IV-vi

SOLAR RADIO OBSERVATORIES, SYMBOLS, FREQUENCY & NORMAL OPERATING TIMES DURING 1957

Name of Observators	Location	Code	Frequency	OPERATING TIME					
Name of Observatory	LOCATION	Code	riequency	1st Quarter	U.T. 2nd Quarter	(hrs) 3rd Quarter	4th Quarte		
Tokyo Astronomical Observatory	Mitake, Tokyo	Tok	9500 3000 200	00-06 00-06	23-09 00-06 23-07	23-09 00-06 23-07	23-06 00-06 23-07		
Research Institute of Atmospherics		Nag	100 67 9400	00-06	23-08	00-06 90-08 23-08	00-06 00-06 23-06		
	Toyakowa		4000 3750 2000 1000	00-06 00-06	23-08 23-08 23-08	00-04 23-08 23-08 23-08	00-04 23-06 23-06 23-06		
Radio Astronomy Section P.T.T The Hague, Netherlands	Nederhorst	Ned	2980 545 250 200	07-16 07-16	07-16 07-16	05-18 05-18 09-12 05-18	08-15 08-15 09-12 08-15		
Astronomical Institute of the Czechoslovak Academy of Sciences, Ondrajov	Prague	Pra	536 231	06-16	06-16	05-18	08-14 08-14		
Cornell University, Ithaca, New York, U.S.A.	Ithaca	Cor	202	14-21	14-21	12-21	13-20		
National Bureau of Standards CRPL, Boulder, Colorado	Boulder	NBS	470 460 167	14-24 14-24	14-24 14-24	12-24 12-24	14-23 14-23		
Observatory Royal de Belgique, Bruxelles, Belgium	Uccle	Ucc	600 167	07-17 07-17	06-18 06-18	06-18 06-18	08-15 08-15		
Hiraiso Radio Wave Observatory Nakaminto-Shi Ibaraki-ken		Hir	200			00-09	21-09		
Astrophysikalisches Observatory Potsdam Tremsdorf b, Germany		AOP	231 23			09-15 09-15	08-14 08-14		
Institute for Toretisk Astrefysikk Universitetet Blinderm, Oslo, Norway	Osto	Osl	200			03-21	07-15		
Radio Physics Laboratory, Sydney Australia	Sydney	Syd	1420 600 Spectrum 40 - 240	21-06 21-06	00-06 00-06 22-07	00-06 00-06 22-07	21-07 21-07 23-08		
Cavendish Laboratory Cambridge, England		Cav	175 81	10-15 10-15	10-15 10-15	09-15 09-15	09-1 09-1		
Heinrich Hertz Institute Edlershof, Germany	Berlin	нні	9400 3000 2900 2000 1500		07-18	07-18 07-18 07-18 07-18 07-18	06-1 06-1		
National Research Council	Ottawa	Ott	2800	12-23	12-23	10-24	12-2		
Ottawa, Canada Jodrell Bank Experimental Station England		Jod	3000 200 80			06-18 06-18 06-18	06-1 06-1		
Harvard Radio Astronomy Station Fort Davis, Texas, U.S.A.	Fort Davis	Har	Spectrum 100 - 580		12-02	12-02	14-0		
I.R.S.A.C., D.S. Bukavu,	Belgian Congo	IRS	169			06-15	06-1		
Chalmers Institute of Technology	Gothenbury, Sweden	CIT	150			03-18	06-1		
Observatoire de Paris, Mendon, Nancay Field Station		Nay	Strip-Scan 169	1	11-13	11-13	11-1		
Paramarito		Par	545 200		11-21 11-21	11-21 11-21	11-2 11-2		
Hollandia		Hol	545 200			21-08 21-08	21-0		
National Committee for LG,Y,, Nizz WDC, P O Vatutenki Moscow 17, US	mir SSR								
	Bjurakan	Bju	209			06-09	06-0		
	Gorky	Gor	9375 3000 206			06-12 06-12 06-12	06- 06- 06-		
K	Kislovadsk	Kis	178			09-12	09-		
Krasnaya Pakhra	Moscow	Mos	600 208			06-12 06-12	09- 09-		
	Simferopal Abastumani	Sim	210			09-12			
	Simeis	Aba Sis	209				09- 12-		
	Simferopal	Sim	208				09-		
	Cracow	Cra	810				09-		

FIGURE 2.IV-2 SOLAR RADIO OBSERVATORIES NORMAL OBSERVING TIMES DURING THE FOURTH QUARTER 1957

TARLE	IV	CAT	$\mathbf{A} \mathbf{I} \mathbf{\cap}$	CHE	$\triangle E$

								TAB	LE IV	CAL	ALOGUI	E OF
		I	LARE						<u> </u>	SPECTRAL	OBSERVATIO	ONS TYP
ir. Day	Beg. UT	End UT	Max. UT	Positio	on	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
Jan. 5		e Patrol b . 4 to 011	etween 0 on Jan. :	-								
6	1038	1443	1128	S 21	E38	3+	1	4				
6	No Flare	e Patrol						5	1703	1712	3+	580-10
7	1311	1422	1358	N17	W 62	3	2					
7	No Flare	e Patro!						7	1733.7	1738	3+	580 - 1
8	1324	1455	1339	N17	W71	3-	3					
00	0144	0251	0201	S 25	W52	3	6					
23 23	0144 2310	2358	2314	N17		3+	7		1			
24	0247	0342	0250			3	8		}			
24	1225	1354	1241	N16	w 31	3	9	12				
24	No Flar	e Patrol	1600 to 24	00				14	2326 2328 2328	2329 2329 221	- 3 -	- 145-1
25	0520	<u>0537</u>	0526	S 22	w89	3	10					
28	No Flan	re Patrol	1500 - 240	00				15	2351 2348	2352 2354	3 -	135-1 -
31	0358	0550	0436	N24	E05	3 +	11	17	0407	0424	-	-
Feb. 8	<u>1550</u>	1615	1555	S 28	E38	2		19	1551	1555	3+	580-1
12	No Fla	are Patro	1 1500 - 1	800				20	1546	15%	3	165-1
21*	1605	2205	1930	N20	W 33	3+		24	2008	2012	2	155-1
28	0005	0420	0057	N18	W 35	3	13	26	0009 0017	0026 0020	- 3+	- 140-
Маг. 1	No Flan	re Report	ed					27	0035	0059		
26		re Repor					1	33	0412	0416	3	-
26		re Repor					1		1327	1329	-	-
29	1025	1400	1115	815	W40	3-	15					
Apr. 2	0255	0444	0256	S 16	W46	2		38				
2	1002	1012	_	s 08	w 90	3	16					
2	1959	2120	_	N25	w90	1		39				
3	0825	1026	0835	S 14	w 60	3	17	40				

^{*}This flare was reported by Sac. Peak without importance. The 3+ has been assigned by McMath. It may have produced the series of radio emissions and the type II burst.

1957 (CONTINUED)

	SPE	CTRAL OB	SERVATIO	v	SINGLE FREQUENCY RADIO EMISSIONS							
)s.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg.	End UT	Max. UT	Flux	Obs.
yd						No Ot	her Rac	dio Frequ	ency Emiss	ions		
yd						9400	CD	0342	0343,4	-	(343)	Nag
	1					3000 1000	CD	0341	0346.2	-	440	Tok
						200	CD	0341 0341	0342.6 0342.5	-	326 360	Nag Tok
i						3750	CD	0616	0621.1		(133)	Nag
†d						1000	CD	0619	0624		(18)	Nag
i						2800	٠	1500	1746			_
ļ .						460	`CA M	1730 1717	1746 1728	-	(135) 150	Ott NBS
						167	CD	1726	1739	-	270	NBS
r,38	1856				44	2800	SD	1856	. 1919	_	(525)	Ott
						167	CD	1858	1913	-	1600	NBS
r,38						200	CD	1358	1410	-	1500	Ned
1						167	CD	1359	1405	-	1500	NBS
1	1039		Α		44	9400	CD	1938	1246	_	(1262)	нні
i	1047				52	2980 2800	CD CD	1037 1040	1127 1134	-	1670	Ned
!						600	CD	1044	1104	-	(1650) 400	Ott Ucc
:						545	CD	1046	1103	-	1100	Ned
1						200	CD	1047	1103	-	800	Ned
						9400	CD	1000	1115	-	348	нні
r,38						2800	CA	1844	1849	-	(142)	Ott
						460 200	SD	1847	1847.9	-	260	NBS
							CD	1843	1851.5	-	<u>75</u>	Cor
.r,38	2011 2006	2055	2	580-100	Har, 38 44	2800 460	CD	2006	2125	-	(6000)	Ott
	2032				37	200	CD CD	2014 2033	2056 2058	-	608 159	NBS Cor
r,38	1305		Α			9000	O.D.				_	
.1,30	1000		А		44	2980 2800	CD SD	1304 1305	1310 1312	-	550 (385)	Ned Ott
						1500	CD	1305	1330	-	(451)	нні
						600 200	E CD	1306 1305	1318 1311	-	110 800	Ucc
_{ir,} 38										-	800	Ned
,,,						9400	SD	2328	2329.8	-	(180)	Nag
ir,38	1838				44	2800	SD	1838	1848	-	(410)	Ott
26,38					j	200	CD	0007	0012.5	_	1400	Tok
ir,38								0001	0012.0		1100	TOK
,,,,,,,												
ir						No Oth	or Rad	lid Frague	ncy Emiss	ione		
ir	1253		_					_	-	ions		
ì l	1233		В		44	2800 460	CD SD	1253 1255	1304 1258.5	-	(270) 180	Ott NBS
ŀ	1040											NEG
l l	1042		В		44	2800 600	CD	1042 1047	1103 1122	-	(250) 300	Ott
						545	CD	1046	1104	-	800	Ucc Ned
						200	CD	1047	1103.5	-	250	Ned
	0859		В		44	2980	SD	0859	0909	-	350	Ned
					į	2980 536	SD CD	0917 0902	0927	-	610	Ned
						200	CD	0902	1022 1017	-	334 800	Pra Ned
						169	CA	0903	0919	-	135	Ucc
ır,38						2980	SD	1325	1329	_	670	Ned
						2800 200	SD	1327	1335	-	(725)	Ott
						200	CD	1330	1334	-	<u>250</u>	Ned
						9500 2980	CD SD	0739	0744	-	604	Tok
					l	2960	SU	0738	0743	-	38	Ned
						9500	CD	0613	0730.5	-	539	Tok
26,38	1609		В		44	2800	SA	1609	1619		(2325)	Ott
	1614				52	545	CD	1610	1655	-	400	Ned
					- 1	460 200	CD CD	1609 1615	1613.2 1618	-	2600 260	NBS Ned
								0	1010		<u>400</u>	ned
					į							
	0231				34, 44	9500	CD	0232	0250	-	1470	Tok
						9400 3000	CD	0235 0231	0241.5 0252.5	-	(721) 570	Nag Tok
	0846				[
	0846 0847				44 52	600 536	CD	0846 0848	. 0854 . 0914	-	186 <u>343</u>	Ucc
_ J					~~	200	CD	0847	0848	-	400	Pra Ned

▼-2

Obs.
Nag
Nag Tok
Nag Tok
Nag Nag
Mag
Ott
NBS NBS
Ott NBS
Ned
NBS
HHI Ned
Ott Ucc
Ned
Ned
нні
Ott NBS
Cor
Ott
NBS Cor
Ned
Ott HHI
Ucc Ned
Nag
Ott
Tok
IOK
Ott
NBS
Ott Ucc
Ned
Ned
Ned Ned
Pra
Ned Ucc
Ned Ott
Ott Ned
Tok
Ned
Tok
Ott
Ott Ned NBS Ned
Ned
Tok Nag
Nag Tok
Ucc Pra Ned
Ned
2

TABLE IV

Gr. Day	Beg. UT	End UT	Max. UT	Pos	ition	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
April 05	No Flar	e Patrol f	rom 0000	- 0200				43	0004	0013	-	-
08	0342	0359		S 23	E50	2		47	0347	0353		
08	0616	0830	0622	S19	W02	3	18	weepens to				
09 11	1722	1850	1738	S23	E04	3	19		0532	0544	-	=
					_						0	
12	1850	2010	1920	S 25	W73	2+		51	1904.7	1916	3	200-100
15	1410	1430	_	N25	E90	2		52	1400.6	1408	3	200-100
16	<u>1040</u>	1300	1105	N28	E85	3	20	54				
17 17	1006 1851	1118	1022	N29 S 18	E72 E73	3 1 -	21	55 57	1846	1852	3	230-100
1.	100-			D	2	=		u,	1040	1000	•	
17 No	o Flare F	atrol						58	2032	2039	3	180-100
18	1310	1353	1323	S 16	E64	2		59	1304	1312	3	220-100
May 09	2225	222		522	w 90	1-		64	2329.1	2334	3	300-100
14	2325 1840	2338 1850	. -		w50	1		67	1840.6	1843	3	200-100
19			1700 May					68	0007.5	0014	2	250-170
21	1900	1935	1908	S 12	E63	1		70	1915	1918	3	165-100
29	No Fla	re Report	ed						1424	1426		
June 01	1252	1338	1256	S 28	w 35	2			1255.4	1303	-	-
03	1040	1202	1047	S18	W18	3	22	77				
04	0859	0940	0902	S17	W27	2						
05	1326	1433	1329	S17	W43	2			1328.9	1333	3+	540-10
15	0730	0840	0743	S18	E62	3-	22		}			
19	0609	0811	0640	S38	E24	3	24					
19	1609	1649	1613	N20	E45	2+	25	82	1615	1620	3	210-
22	0236	0257	_	N23	E12	2		85				
24	0838	0929	0850	N22	W14	3	27					

2.11-2

MPORTANT RADIO EMISSIONS DURING 1957

α	SPEC	TRAL OBS	ERVATIO	NS TYPE	īv		SIN	GLE FRE	QUENCY F	RADIO EM	ISSIONS		
Obs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.	
	0050				44	9400 3000 200	CD CD	0054 0050 0054	0109 0148 0059	:	(255) 501 120	Nag Tok Tok	
					Har.	169 81 81	CD M CD	1016 1020 1050	1025 1033 1103	-	7 <u>0</u> 150 20	Ucc Cav Cav	
Har, 38	1711 1702	2000	3	580-100	38 44	2800 200 167	SD CD CD	1702 1703 1706	1712 1947 1856	-	(700) 159 6300	Ott Cor NBS	
						2800 536 536 536	SA SD SD SD	1346 1336 1339 1341	1353 1336.5 1339.5 1341.5	•	(160) 65 85 65	Ott Pra Pra Pra	
Har, 38	1729				44	2800 460 167	SA CD CD	1729 1733 1734	1744 1856 1906	-	(211) 1300 5600	Ott NBS NBS	
						2800 545 536	CD. CD CD	1339 1332 1333	1345 1340 1343	-	(65) 200 175	Ott Ned Pra	
						3750	CD	0145	0146.5	-	(98)	Nag	
						167	CD	2313	2355	-	2100	NBS	
						9400 3750	CD	0249 0249	0306 0256.5	-	(319) (113)	Nag Nag	
						2980 536 200 200 200	- CD CD CD CD	1233 1229 1324 1332 1341	1245 1327 1325 1334 1342.5	- - - -	250 235 550 500 600	Ned Pra Ned Ned Ned	
Har 38 Syd													
Har, 38 Syd						9400	SD	0519	0520.5	-	(23)	Nag	
Syd						9400 3000	SD CD	0407 0400	0407.3 0600	-	(41) 234	Nag Tok	
Har,38						2800 460 200	SD CD CD	1550 1551 1552	1556 1554 1557	-	(865) 1400 74	Ott NBS Cor	
Har, 38						167	SD	1546	1547.9	-	510	NBS	
Har, 38						200 167 167	SD SD	1630 1827 2037	1630.5 2244 2038	-	80 460 1400	Ned NBS NBS	
Syd Har, 38	0001 0029	0126	1		52 Syd	600 200 167	CD CD	0001 0012 0001	0142 0052 0030	-	100 240 640	Syd Tok NBS	
Syd Syd						3000 No.01	CD	0038	0047.4	sion	220	Tok	
Har,38						No other Radio Frequency Emission No other Radio Frequency Emission							
						2980 545		1024 1024	1028 1025	-	84 160	Ned Ned	
	0301				44	9400 3000 200	CD CD CA	0302 0301 0250	0350 0401 0330	-	(240) 800 630	Nag Tok Tok	
						1500 536	SD SD	1036 1035	1038 1039.5	-	(129) 300	HHI Pra	
	1955				44	2800 200	SD CD	1955 1954	2018 1957	-	(176) 159	Ott Cor	
	0826 0826		A		44 34	9400 1500 545 200	CD CD CD	0828 0829 0830 0826	1445 0907 0930 0936	- - -	(632) (383) 1600 10	HHI HHI Ned Ned	

211-1 0

TABLE IV

		FLA	RE			\top			s	PECTRAL	OBSERVATI	ONS TYPE
Gr. Day	Beg. UT	End UT	Max. UT	Positi	on I	mp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
June 27	2322 2330	2418 2427	2335 2335	N20 W N14 E	/62 32	1		<u>8</u> 8 88	i			
28	<u>0658</u>	<u>0950</u>	0722	N10 E	27	3	28					
28	1223	1315	1225	N12 E	21	2						
30	0924	1332	1025	N09 V	v 03	2+	29					
July 02	No Fla	re Reporte	ed.					90				
02	0705	0805		N09 V	w 30	2+	31					
03*	0712 0830	0880 1145	0745 0840	N14 V N10 V		3+ 3+	32 32	92 92				
04	0521	1154 0802				3 2+	33					
15												
16	1742	2008	1804	S 33	W28	1+		98				
17	0112	0148	0116	NII	E30	2		99	0125	0131	2	

*This great flare has a double response with two distinct radio emission times, one starting at 0722, the other at 0831.

2. IV-3

	SPE	CTRAL OF	SERVATIO	NS TYPE I	v		SINGL	E FREQU	ENCY RA	DIO EMISSI	ONS	
ıs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev, Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.
						9500 9500 9400 9400 2980 169	CD CD ESD CD SD ESA	0632.8 0659.8 0633 0654 0659.5 0657	06\$4.3 07\$3.8 06\$5 07\$8 07\$3.5 06\$8	0633.2 0700.3 0633.2 0701	820 916 (279) (504) 536 225	Tok Tok Nag HHI Ned Ucc
	1321		A		44	2800 600 545 536 450 450 450 231 231 200	SD ECD FD CD ECD ESD CD F SA CA	1334.5 1332 1351.5 1331.5 1328 1336 1342 1334 1346 1333.5	1342.5 1346 1357 1543 1336 1342 1358 1340 1405 1339.5	1335.9 - - 1330.5 1338.9 1355.7 1339 1358 1334	(850) <u>366</u> <u>1300</u> <u>362</u> 1300 <u>57000</u> <u>33000</u> 550 550 300	Ott Ucc Ned Pra NBS NBS NBS AOP AOP Osl
	1513	1523	3	580-200	Har, 38	2800 201 169	SD ECA ESA	1506 1534.5 1534	15 99 15 35.5 15 35	1506.5 1535 -	(29) 70 243	Ott Cor Ucc
r, 38					•	2800 545 201 169	SD SD CD ESA	1742.7 1743 1742 1747	17 47.7 17 45 17 50 17 48	1743.3 - -	(165) 60 <u>70</u> 243	Ott Ned Cor Ucc
	2243	2315	3	580-300	Har, 38	9400 450 450 200	CD CD CD	2243.5 2228 2303 2314	2247.5 2252 2313 2314.5	2243.7 2243.4 2306.6	(30) <u>26000</u> <u>12000</u> <u>250</u>	Nag NBS NBS Hol
						600 600 545 536	CD ESD CD CD	0950 1007 1008 1006	0953 1010 1010 1014.5	1007	162 120 550 357	Ucc Mos Ned Pra
	i					231 200 169 169	SD CD ECA	1333 1331.5 1332 1334	13 34 13 33.5 13 35 13 37	1333.5 1333 - -	550 340 243 243	AOP Osl Ucc Ucc
	1801 1802 1813	1915	3	580-100 F	26, 34, 44 Har, 27, 38 52	9400 2980 2800 545 450 600 167	SD CD CA CD CD - CD	1730 1801.5 1628 1801 1803 1851 1810	1748 1926.5 2108 1931 1917 1930 1849	1736 - 1828.5 - 1830.8 - 1832	(336) 1275 (1080) 1200 1700 240 1000	HHI Ned Ott Ned NBS Ucc NBS
						231 169	CA CD	0735 0725	1030	1012 -	<u>180</u> <u>95</u>	AOP IRS
	1409	1459	2	270-100	Har, 38	9400 9400 169 169	SD SD CA CA	1409 1437 1408 1438	1420 1456 1425 1505	1412 1448 -	(295) (293) 240 240	HHI HHI Ucc Ucc
r,38						9400 536 450 231 200 167	CD CD ECD ECD FCD CD	1435.5 1436 1435.4 1435 1435 1434.5	1443 1441.5 1438.4 1440.5 1441 1440	1436 1437 1435.9 1435.5 1438 1436.2	(355) 200 2800 350 470 5600	HHI Pra NBS AOP Osl NBS
r, 38	1720				27	2800 450 200 167	CD ECD CA ECD	1720.5 1720.9 1720 1720	1727 1725.9 1727 1726	1721.1 1722.9 1723.5 1721.2	(90) 340 190 5700	Ott NBS Osl NBS
r,38					į	2800 450 200 167	CD ECD SD ECD	1902 1903 1902 1901.8	1905.5 1908 1905.5 1907.8	1904.5 1905 1905 1904.4	(44) 250 <u>800</u> 7000	Ott NBS Osl NBS
rd						9500 3000	SD SD	0229.3 0229.2	02 80.3 02 3 1	0229.7 0229.5	409 255	Tok Tok
d						600 200	CD SD	0427 0425.5	04 27.5 04 2 6	0427	61 240	Syd Tok
						9400 231 231 169	CD CD SD CDF	1117 1129 1150.8 1138	1207 1147 1154 1140	1124 - 1151.6	(535) 350 260 189	HHI AOP AOP Ucc

V-4

TABLE IV

			FLARE		-			S	PECTRAL O	BSERVATIO	NS TYPE II	
Gr. Day	Beg. UT	End UT	Max. UT	Position	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range	o
July 21	0633	0750	0658	N30 E15	2+	36	102					
21	1320	1442	1337	N29 E12	3	37	103					
21	1517	1526	_	S25 E09	1+							
21	1737	1752	1745	N22 W12	: 1		105	1746.4	1752	3	200-100	н
21	2215	2302	~	N20 W1	5 1-		106					
22	0953	1150		N15 E51	3	38	108					
22	1240	<u>1505</u>	1303	S 23 E07	3	39						
24	1712	2025	1811	S24 W2	7 3	40	109					
27	0637	0820	0703	S24 W6	l 2+	41		:				
Aug. 01	1352	1437	1420	S35 E04	1		111					
02	1432	1446	1436	N26 E32	2 2		112	1437.9	1442	3	210-100	н
03	<u>1721</u>	1735	1723	N26 E1	7 1+		114	1723.4	1729	3	160-100	H
05	1900	<u>1954</u>	1905	N26 W0	8 1+		115	1906.8	1910.3	3	165-100	Н
06	No Flai	re Report	ed:				116	0234	0246.2	2		8
06	0423	0433	0426	N25 W2	2 1-		117	0431	0438	2		s
08	1116	1257	1134	N27 W5	7 2+	42						
												

ī	SPEC	TRAL OBS	ERVATION	S TYPE I	v		SIN	GLE FRE	QUENCY I	RADIO EMIS	SIONS	
Obs.	Beg. U T	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.
	2408				44	9500 3000 1420 460 200	CD CD CD CD	2352 2408 2357 2346 2330	2808 2818 2405.2 2620 2330.7	-	600 504 239 610	Tok Tok Syd NBS Tok
	0707 0716 0717	0826	B 3		44 27 52	9500 536 200 200 200	CD CD CD CD CA	0707 0707 0717 0717 0730	0742.2 0834 0827 0732 0800	- - - -	622 280 350 1500 750	Tok Pra Ned Tok Tok
	1222		В		44	2800 545 536 460 200	SD CD CD CD CD	1222 1223 1221 1222 1220	1237 1231 1339 1345 1234	- - -	(355) 600 400 1200 350	Ott Ned Pra NBS Ned
	0945				44	2980 600 545 169	SD SA CD SA	0953 0952 0955 1006	1002.5 1007 1005 1101	-	119 90 90 135	Ned Ucc Ned Ucc
	0015				44	9500 3750 3000 2800 200	SD SD CD SD CA	0015 0015 0015 0015 0030	0036 0018 0038 0021 0105	0016.5 0016.3 0016.5 0017 0047	1106 (305) 630 (180) 400	Tok Nag Tok Ott Tok
						9500 2000	CD F	0706,7 0721,6	0746.5 0726.6	0712 0724.8	519 251	Tok Nag
	0832 0832 0849 0837	0914	B 3		44 16, 26, 34 27 52	9500 9400 9375 3000 2980 2000	SD CD CD CD CD- ECD-	0733 0729 0725 0733 0726.5 0726	0930 0800 0803 0757.5 0816	0742 0841 - - - 0809.5	710 (2380) 600 285 585 (1690)	Tok HHI Gor Gor Ned Nag
						1000 600 9400 9375 3750 2000 600 600 545 545 231 210 200 200 200 178 169 169	F-CD FD CA CD CD CD CD CD CCD CCD CD CD CD CD CD C	0723 0722 0750 0831 0831.5 0832 0831 0836.7 0824 0835 0805 0832 0849 0901 0835 0802.5 0835 0836.5	0823 0800 0830 - 0851.5 0855 0855 0856.7 0846 0945 0913 0905 0905 1030 0804 1040 0841 0840 1040	0809.7 0810 	(7570) 113 700 1030 (2960) 2320 (763) 928 (8200) 312 324 850 5200 600 1200 550 920 3400 1368 1026 400	Nag Ucc AOP Tok Nag Gor Nag Nag Ucc Ned Ned AOP Sim Ned Hir Osl Ned Kis Kis Ucc
	2019 1801 1739 1753	1825	3 A	580-100	44 Har, 27, 38 44 52	231 9500 3000 3000 545 545 536 169 2800 167 9400 2800 545 200 167	CD CD CD CD CD CD CCD CCD CCD CCD CCD C	0537 0536.7 0607.3 0535.5 0607.5 0606 0537 2019 2016 1740 1751 1753 1754	0541,5 0550 0610 0539 0609 0611 5 0538 2137 2047 1827 1811 1809 1825 1826	1114.6 0538.7 0539 0608.7 - 0608 2043 2036 1748 1757.3 - 1818	400 511 359 307 2900 500 (300) 60 (627) (350) 1000 850 1700	Tok Tok Tok Ned Pra Ucc Ott NBS HHI Ott Ned Ned NBS
Syd			· · <u>-</u>			3000 2000 1000 200 200 167	CD ECD CD CD ECD ECD	0114.5 0114 0114 0113.8 0118 0113.9	ง118 0116 9118 0115.6 0120 ง115.9	0115 0115.3 0115.5 0114.5 -	269 34 (24) 900 390 1200	Tok Nag Nag Tok Hir NBS

J. II-3

TABLE IV

Gr. Day	Beg. UT	Find	LARE					SI	ECTRAL OB	SERVATION	IS TYPE
		End									
		UT	Max. UT	Position	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
Sept. 02	0409	0445	0412	N14 W58	1+		137	0423	0431	2	
02	1357	1346	1303	N10 W26	2		138 a				
02	<u>1313</u>	1830	1351	S34 W 36	3	56 :	138 b				
03	0037	0116	0049	N24 W24	1		140	0035.8	0041	3	580-100
03	1412	<u>1727</u>	1429	N23 W 30	3	58	142				
06	<u>0751</u>	0900	0803	N23 W 66	3	ł 59					
08	1627	1634	_	S13 E25	1-		145	1632.3	1638	3	190-10
09	0755	0855	0813	N12 E22	3	60					
10	0223	0300	0250	N14 E16	3	61					
11	0140	0200	0142	N15 E90	1-		147	0150	0200.5	2	
11	0236	0722	0300	N13 W02	3	63	148				
12	0703	0740	0713	N09 W 15	3	64	150	0712	0721	-	-
12	1510	1638	1516	N11 W18	3	65	152	1516	1628	3+	580-
	<u></u>	2000	-0.0	W10	3				- 100		

2.11-6 0

\Box	SPI	CTRAL O	BSERVATIO	ONS TYPE	ıv		SINC	GLE FREC	UENCY R	ADIO EMISS	SIONS	
bs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max, UT	Flux	Obs.
ı r,2 6,38						9500 9400 3750 3000 2000 200 167	CD ECD ECD CD SD CD ECD	0126.8 0125.5 0126 0126.7 0127 0127 0127	0129.8 0129.5 0130 0129.2 0130 0128 0136.1	0128.5 0127.1 0127.4 0127.5 0128.6 0127 0127.9	1689 (1840) (1700) 1400 (550) 1000 1200	Tok Nag Nag Tok Nag Hir NBS
						231 200 169	CD CD	0812 0820 0820	0832 0827 0824	0822 - -	140 150 <u>110</u>	AOP Ned Ucc
						1500 600	SD ESD	1147 1229	1152 1229,5	1149.5 -	(113) 190	HHI Ucc
	0920 0920 0930		B 3		44 16, 26, 34 27, 52	9400 2980 1500	CD CD	0915 0943 0900	1147 1023 1340	0950 - 1001	(693) 1192 (692)	HHI Ned HHI
r 26 38						2800 450 201 167	SD ECD ECD ECD	2017.7 2017.4 2022 2021	2022.7 2021.4 2027 2025	2019.5 2017.9 2024.5 2023.6	(760) 7100 450 5700	Ott NBS Cor NBS
						9400 3000	ECD CD	0550 0550.5	0553 0555	0551.2 0552	(305) 362	Nag Tok
						9400 231 210 200	CD F CD CD	1036 1037 1039 1039	1050 1048 1044 1044	1038 1043 1040	(298) <u>550</u> 224 <u>230</u>	HHI AOP Sim Ned
ļ						9400 169	CD ESA	0622 0704	0638 0705	0625 -	(112) 200	Nag Ucc
r, 26,38	2209 2212 2214	2343	3	580-100	44 Har, 38 37	9400 3750 2800 2000 1000 600 450 450 167 167	ECD ECD SD ECD- CD ECD- CD ECD CD	2209.5 2209 2210 2210 5 2211 2214 2211.9 2220 2213.7 2223	2216.5 2217 2220 2216 2243 2240 2219.9 2515 2221.7 2240	2213 2213.1 2213.7 2213.7 2213 2215 2214.6 2235 2215.2 2233	1170 (538) (480) (619) (433) 315 1900 420 5000 810	Nag Nag Ott Nag Nag Syd NBS NBS NBS
	0548				34. 44	9500 3000 2980 1000	CD CD CD ECD-	0546.7 0545.5 0548 0548	0547.3 0549 0600 0728	0548.3 0549 - 0549	696 569 426 (285)	Tok Tok Ned Nag
:						600 545 200 200 169	CA CA CD CA CD CA	0557 0548 0540 0548 0548	0730 0730 0640 0552 0552	0654 - 0615 0549.5	455 4000 830 1600 350	Syd Ned Tok Tok Ucc
	1301 1302 1302 1303 1309	<u>1600</u>	3 B	580-100	Har. 38 44 16. 26. 34 27 52	9400 2800 450 231 200 200 200 169 169	CD SD CA CD ECD CD CD CA	1302 1301 1300 1303 1300 1303 1320 1303 1315	1552 1406 1600 1318 1315 1316 1420 1315 1317	1315.5 1338 1307 1310	(900) (3900) 14000 200 1200 1200 300 300	HHI Ott NBS AOP Jod Ned Ned Ucc Ucc
						231 231 231 169	CA CD CA SA	1331 1341 1354 1342	1341 1354 1430 1404	1337 - 1416	1200 1400 1600 300	AOP AOP Ucc
						9400 9375 3000 2980 536 231 206 200 200 169	CD CA SD CD ECD CD F ECD CD ECD ECD	0948 0949 0949 0949 0949 0950 0949 0945 0949 0952.5	1013 0958 0952 0956 0958 0957.9 0958 0955 0955	0950 0950 0950 - 0950 - 0954 0950 - 0954.5	(545) 783 332 605 505 1600 590 2000 650 330	HHI Gor Gor Ned Pra AOP Gor Jod Ned Osl
						2800 169 169	CD CAF CAF	1256 1253 1323	1309 1255 1327	1301 - -	(204) 330 180	Ott Ucc Ucc

2.W-\$5 (2)

TABLE IV

		F	LARE			Flare			SPECTRAL C	BSERVATIO	ONS TYPE	II
Gr. Day	Beg. UT	End UT	Max. UT	Position	Imp.	Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range	(
Aug. 10	0125	0142	0129	N26 W71	1		121	0129.4	0133.8	3	330-100	н
21	<u>0745</u>	0844	0756	N24 E20	3	43						
23	1126	1300	1154	N16 W1	7 3	44						
28	0913	1404	0955	S 31 E33	3+	45	125					
28	2010	2405	2024	S29 E30	3	46	126	2021.9	2026	3	330-100	н
29	0545	0715	0555	N24 E35	2+	47						
29	1031	1201	1052	S 25 E20	3	48						
30	0620	0804	0600	N26 E22	2+	49						
30	No Flai	re Reporte	ed				130	2213.7	2217	3	300-100	На
31	<u>0521</u>	1048	0727	S32 W02	: 3	50						
31	1257	<u>1557</u>	1312	N25 W 02	3+	51	132					
31	1338	1455	1353	N12 W02	2 2+	52						
Sept. 01	0946	1030	0952	N12 W 09	3	53	135	:				
01	1225	1437	1302	N14 W15	5 3	54						

2:II-5 D

2.

	SP	ECTRAL O	BSERVATE	ONS TYPE	IV		SINC	SLE FRE	QUENCY R	adio emis	SIONS	
Obs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.
Syd					·	9500 3000 2000	CD CD	0412 0411 0410	0452 0424.5	0419 0420 0419	501 437 (23)	Tok Tok Nag
	1257 1257		Α		44 34	9400 2980 2800 600 536 231 169 81	SD CD SD ECA CA SA CA CD	0408 1255 1257 1258 1258 1256 1300 1311 1256	1336 1342 1304 1302 1610 1502 1329 1436	1302 - 1300 - 1300 1324	(333) 429 (56) 150 240 700 540 (1300)	Nag HHI Ned Ott Ucc Pra AOP Ucc Cor
	1310				16, 26 27, 52	2800 2800 600 169	SD SD SA	1317.3 1321 1339 1331	1321.3 1326.5 1353 1415	1319 1324 -	(30) (40) 102 <u>540</u>	Ott Ott Ucc Ucc
Har,38	0038				44 -	9400 3000 1000 545 450 200 167	CD CD CD CD ECD CD CD	0033 0035 0034 0038 0036 0038	0051 0052.5 0042 0039.5 0041.9 0050 0040.5	0045 0037 0041 - 0036 0039 0039.4	(600) 462 534 300 4500 420 4500	Nag Tok Nag Hol NBS Tok NBS
	1417				16, 44	9400 2800 1500 545 450 231 167	SD SD SD CD CD ECD ESD	1415 1417 1420 1444 1424 1455.2 1455.1	1537 1442 1440 1444.5 <u>1431</u> 1456 1455.9	1423 1424 1425 - 1428 1455.4 1455.2	(515) (1350) (509) 700 400 320 3700	HHI Ott HHI Ned NBS AOP NBS
						9500 9400 9375 3750 3000 2980 2000	CD SD ECD CD SD CD CD-F	0801 0756 0758 0753 0751 0753 0756	Q804.8 Q850 Q800 Q805 Q804 Q805 Q819	0801.5 0818 0758 0802 0800	751 (588) 730 (365) 430 380 270	Tok HHI Gor Nag Gor Ned Nag
Har,38						200 167	CD CD	1630.5 1634	1632.5 1636.3	- 1635	180 980	Ned NBS
						9400 2980 2980	SD SD SD	0756 0801 0808	0825 0803 0820	0814 - -	(318) 267 270	HHI Ned Ned
						9500 3000	SD SD	0226 0223	0231 0258	0228 0228	481 349	Tok Tok
Syd						9500 3000 2000	SD SD CD	0141.3 0141.2 0141	0142.3 0142.2 0142.5	0141.5 0141.5 0141.9	453 376 20	Tok Tok Nag
	0244 0305 0331 0300	0722	3		16, 44 Syd 27 52	9500 3750 3000 2000 1420 1000 545 200	CA CA CA CA CA CA M CD CD	0247 0243 0244 0243 0244 0235 0255 0300	0457 0413 0359 0353 0350 0345 0348 0325	0305 0304 0300.7 0304 0304 0320 -	584 (373) 1110 (564) 604 (8200) 30000 520	Tok Nag Tok Nag Syd Nag Hol Tok
Har 26						9500 9400 2980 545 536 208 200	CD CD CD CD CD CD CD	0708 0707 0708 0709 0705 0709 0708	0714 0721 0715 0720 0727.5 0714	0709 0709 - - 0712 0713 0709	697 (450) 443 300 530 366 1880	Tok HHI Ned Ned Pra Mos Hir
Har,38	1515 1500 1516	2025	3	580-100	Har, 27, 38 16, 34, 44 37	9400 2980 2800 1500 600 536 450 201 200 167 81	SD CD - CD ECD ECD CD ECD	1514 1515 1514 1515 1516 1513 1515 1515 1515	1525 1526 1532 1543.5 1300 1644.5 2030 1728 1645 1526 1531	1516 - 1515 1516 - 1528 - 1528 1519	(1150) 1220 (850) (627) 430 700 7500 440 1050 2400 350	HHI Ned Ott HHI Ucc Pra NBS Cor Osl NBS Cav

2. II-6 2

TABLE IV

		F	LARE					SPI	ECTRAL OF	SERVATION	S TYPE II
Gr. Day	Beg. UT	End UT	Max. UT	Position	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
Sept. 12	2145	2222	2150	S17 W76	1		153	2150.4	2153	3	300-100
						Ī					
13	1410	1508	1422	N09 W32	2		155				
15	<u>2030</u>	2110	2042	N11 W64	2		158	2044.5	2049	3	250-100
16	1451	1709	1459	N08 E48	2+	66					
16	2242	2304	2245	N11 W77	1+		159	2248.6	2254	3	220-100
17	0416	0945	0807	N23 E28	2+	67					
18	0624	0720	0633	N23 E13	2+	68					
18	1658	2110	1740 1840	N23 E08	3+	70	161				
19	0350	0555	0410	N23 E02	2 3+	71	162				
19	0744	1200	0800	N23 E01	l 2 +	72					
20	2117	2222	2123	N07 W1	4 2		165	2120.9	2123	3	330-10
21	1330	1510	1335	N10 W0	6 3	74	168				
								: :			
22	<u>124</u> 8	1458		N07 W3	7 2+						
24	0224	0307	0227	N15 E9	1 1-		171	0212	0226		
24	0507	0522	0513	N15 E9	0 1+		172	0504	0507		
26	1832	1850	1836	S 26 E2	9 1					_	

2.11-7= 0

	SPI	ECTRAL O	BSERVAT	IONS TYPE	īV		SING	LE FREQ	JENCY RA	DIO EMISSI	ONS	
Obs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Type	Beg. UT	End UT	Max. UT	Flux	Obs.
	1927 1948 1926	2015	3	580-100	Har, 38 16, 27 52	450 201 167 167	CA ECD ECD CA	1915 1920 1926.3 1927	2430 2047 1927.1 2435	2028 - 1926.8 2200	450 384 2000 4000	NBS Cor NBS NBS
:						2800 2800	CD CD	1700 1705.5	1706 1708.5	1702 1706.3	(120) (77)	Ott Ott
Syd						9500	CD	0345	0435	0335	499	Tok
	0150					9500 3000	CD	0536 0535.3	05 49 05 43	0538 0536,5	538 800	Tok Tok
	2150				44	9500 2800 1420 600 450	CD SD SD CD ECD	2151 2150 2152 2152 2151.7	2300 2300 2155.5 2156.2 2152.7	2153 2153 2153 2154 2152.1	1230 (1000) 421 316 5200	Tok Ott Syd Syd NBS
:						9500 9400 2000 1000	ECD ECD CD F	0151.8 0151.8 0151.9 0151.9	0160.3 0154.8 0154.9 0452.9	0152 0152,1 0152,8 0152,8	701 (166) 92 305	Tok Nag Nag Nag
						9500 3000 1420	CD CD	0421 0421 0424	0 436 0 441 04 27	0424 0427 0427	687 435 258	Tok Tok Syd
	2141				44	9500 9400 3750	CA CD CD	2142 2200 2158	23 48 23 07 2 306	2203 2203 2203	1134 (420) (410)	Tok Nag Nag
						9500 9400 209	CA SD CA	0615 0634 0627	07 05 06 57 06 31.5	0643 0636 0631	631 (42) 46	Tok Nag Bju
	0237	·			44	9400 3750 3000 2000 1420 545	F CA F CD	0238 0238 0239 0248 0251 0253	0256 0256 0319 0258 0259 0318	0241.4 0254.4 0254 0255 0255	(490) (478) 1100 (339) 252 300	Nag Nag Tok Nag Syd Hol
Har,38	1636 1651 1646	2013	3 :	580-100 Ha	26, 34, 44 r, 38 , 52	200 2800 450 167	SID CID CID ECID	0248 1644 1647 1646	03 49 17 35 17 30 18 15	- 1651 1656 1700	2000 (4000) 14000 3700	Hir Ott NBS NBS
Har,38				- ·,	. •2	9500 9500 2800 1420 450	ECD CA SD SD ECD	2145 2159 2145 2146 2144.9	2151,3 2251 2150 2150 2145,4	2146 2230 2145.8 2146 2145	1042 577 (230) 300 1300	Tok Tok Ott Syd NBS
						2980	SID	1211.5	1314.5	-	306	Ned
						9400 3750 2000	ECD ESD	0622.4 0622.4 0622.5	0627.9 0627.9 0027	0623.4 0623.4 0623.6	(785) (1640) (405)	Nag Nag Nag
Syd Syd						2000 1420 600 545 450 167	SD CD F CD ECD ECD	2217 2213 2218 2219 2217,1 2212	2419 2419 2430. 5 2420 2218.4 2237.4	2217.9 2213 2219 - 2217.8 2214	(75) 183 98 120 1100 1600	Nag Syd Syd Hol NBS NBS
Syd Syd						9500	CD	2323	2340	2327	495	Tok
	1504				44	9400 1500 450 200 169	CD SD CD ESD ECD	1502.5 1502 1503 1501.5 1503	1506 1507 1504.2 1507.5 1507	1504 1503.3 1503.6 1503	(283) (165) 570 130 <u>150</u>	HHI HHI NBS Osl Ucc
	0754				44	9400 9375 2980 536 200	SD ESD CD CD CD	0754 0757 0754 0755 0754.5	0825 0806 0770 0814 0804.5	0758 0804 - 0758	(355) 596 314 230 300	HHI Gor Ned Pra Ned
ar,38						167	ECD	2119.1	2120.6	2120	2800	NBS
				<u></u> _		9400 206 206	SD ECD EDF	0913 0923 0928	0951 0926 1200	0921 - 0944	(325) 374 432	HHI Gor Gor
V7 0										<u> </u>		

2.11-8 2

2.7/~?

			ARE				Flare				BSERVATION	
Gr. Day	Beg. UT	End UT	Max. UT	Posi	tion	Imp.	Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range
Sept. 26	1907	2345	1952	N22	E15	3	75	173				
30	1657	1750	1706	N25	w37	3	76	176				
Oct. 09	0340	0500	0355	S 38	W14	3	77	179	0402	0422	-	-
13	0534	0641	0539	N12	E40	2+	78	181				•
15	No Flar	e Patrol l	between 2	000 and	2400							•
16	0152	0202	0152	S 25	E21	3	79	185				
16	0413	<u>0500</u>	0425	S 26	E20	3	80					
18	No Flai	e Patrol l	between 2	000 and	2300							
19	<u>0603</u>	<u>0920</u>	0639	S 24	W25	3	81					
20	No Flai	e Patrol I	between 0	000 and	0300		P					
20	1637	1804	1642	S 26	W4 5	3+	82	190	1650.9	1658	3+	350-100
20	No Flar	e Patrol l	between 1	200 and	2215				2148.7	2150	3	190-100
21	1212	1314	1218	S 25	W52	3	83					
23	0621	0645	_		W77	3	84					
23	2222	2236	-	S18	W79	1		195	2204 2226	2205 2227	1 1	
24	<u>2314</u>	<u>2326</u>	2319		W42	1-		196	2310	2315	1	•
25	2339 1500	2406 1612	2240 1505	N27 N12	W44 E03	1 2		197	2341	2358	1	
						_						,
26	0753	0833	0803	N12	w 10	2						
31 Nov	No Flai	e Reporte	ed				! !	203	2119	2121	3	210-130
Nov. 02	0904	0955	0918	S 21	W 16	2+	86					

	SPEC	CTRAL OB	SERVATIO	ONS TYPE	īV	-	SING	GLE FREG	UENCY R	ADIO EMIS	SIONS	
Obs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.
Har,38	2145				44	9500 9400 2800 1420 600 200 167 167	CD CD CD SD CD CD ECD CD	2146 2153.7 2145 2154 2149 2151.7 2148.7 2153	2156 2157.7 2200 2155.5 2156.5 2153.7 2152.7 2415	2154 2153.7 2154 2154 2150 2152 2151.8 2321	860 (380) (105) 278 178 2500 3200 320	Tok Nag Ott Syd Syd Hir NBS NBS
	1418 1419	1606	3	580-400	44 Har, 27, 38	9400 1500 545 545 536 450 200 167	CD CD CA ECD CD CD ECD	1415 1415 1414 1418 1412 1427 1417.5	1450 1455 1418 1608 1627.5 1611 1419	1418 1420 - - - 1454 1418 1417.9	(542) (266) 240 5500 605 6500 225 1700	HHI HHI Ned Ned Pra NBS Osl NBS
Har,38						2800 450 200 167	SD ECD CD ECD	2041 2041 2041 2044.7	2046 2056 2043 2047.2	2042 2042 2042 2045,9	(365) 800 750 3000	Ott NBS Hir NBS
						9400 2800 450 200 167	SD SD ECD CD ECD	1520 1519 1520,2 1549,5 1549,6	1545 1525 1521.6 1551.5 1550.9	1521 1521 1520.2 - 1550.1	(724) (260) 320 300 3500	HHI Ott NBS Ned NBS
Har, 38						9400 3750 2800 2000 545 167	ESD ESD SD ESD CD ECD	2243 2243 2244 2243.8 2244 2248.5	2246 2246.5 2249 2246.8 2245 2251.2	2244.4 2244.7 2245 2245 - 2249.4	452 (476) (425) (320) 300 3500	Nag Nag Ott Nag Hol NBS
						9500 3000 200	CD CD	0440 0440.5 0440.3	0450 0445.3 0442	0443 0441 0441.2	776 427 390	Tok Tok Tok
	1804 1810 1805	2428	3	580-10	44 ⁰ Har, 38	9500 2800 450 450 201 167	SD CD CD ECD E CA	0631 1821 1807 1910 1808 1820	0711 1901 1910 1930 2302 2450	0632 1825 1823 1915 - 2100	551 (275) 980 2000 356 2000	Tok Ott NBS NBS Cor NBS
	0400 0427	0730	3		16, 44 Syd	9400 3750 3000 2000 1000 200 200	CD CD CD CD F CA CD	0359 0359 0401 0402 0405 0408 0411.5	0419 0410 0411 0410 0416 0638 0413	0406 0406 0406 0406 0409 0510 0411.8	(1240) (1080) 1410 (254) 305 580 1420	Nag Nag Tok Nag Nag Tok Tok
						169 169 169	CAM CAM CAM	0754 0828 0845	0759 0834 0858	:	370 370 340	Ucc Ucc Ucc
Har 26,38						9500 545 450 167	ECD CD ECD FD	2119 2122 2119 2120.2	2155 2127.5 2126 2123.3	2120 - 2119 2121.3	887 300 1000 3500	Tok Hol NBS NBS
	1331 1330	1345	3	300-100	16,34, 44 Har, 38, 52	9400 2800 1500 450 231 231 200 200 200 167 81	CD CD CD CD SA CD MCA ESD ECD SD	1330 1330 1330 1331 1330 1340 1330 1330	1437 1344.5 1401 1346 1340.3 1346.7 1347 1347 1341 1339	1336 1337 1336 1336 - 1346 - 1331 1339 1334	(1095) (785) (432) 600 1800 1800 1250 200 4000 (300)	HHI Ott HHI NBS AOP AOP Ned Osl Jod NBS Cav
Syd	1249				44	9400 2800 1500 450 450 200	CD CD CD ECD CA SD	1252 1253 1252 1254.3 1256 1254.3	1341 1308 1215 1256.3 1307 1254.6	1301 1256 1256 1255.3 1303	(958) (275) (297) 540 340 360	HHI Ott HHI NBS NBS Ned
Syd						8000	(5)	1000	2000		,	
	1836				34, 44	2800 2800	SID CID	1836 1836	2236 1841	1836	(57)	Ott Ott

2.II-7 2

.I**V**-7

TABLE IV

		F	LARE						SI	PECTRAL	OBSERV	ATION	S TYPE
Gr.	Beg.	End	Max.				Flare Serial	Event	Beg.	End	Max.		req.
Day	UT	UT	UT	Positi	on	Imp.	No.	No.	UT	UT	Int.		ange
Nov. 04	No Flar	e Reporte	d					204	2240	2242			
05	1205	1257	1207	S24 V	₩5 4	3	87				***		
								1	7				
06	No Flar	e Reporte	d					207	0424	0434			
06	0834	0900	0841	S 28 V	₩ 67	2+	88						
10	0606	0735	0623	S 25 1	E65	3	89						
13	0457	0511	0458	S 25 1	F27	1		211	0502	0505			
13	0401	0311	0430	323		•			0002				
		2022	A		N/4E	•	91						
15	0517	0636	0537	N18 V	W 45	3	91						
20	No Flai	re Reporte	·d					216	0050.5	0052			
22	0404	0446	0409	N31	W28	2+		217	0410.5	0427		-	-
İ													
23	<u>0750</u>	0925	0804	N26	W 54	3	92		i i				
24	0848	1202	0911	S14	E37	3+	93						
ł							•		1				
24	No Fla	re Report	ed					221					
25	No Fla	re Report	ed				1	222	0416	0430			
29 Dec.	0045	0600	0213	N41		3+	94	224	0059	0103		-	-
05	0548	0812	0657	S 20	W19	3	97						
06	0347	0443	0353	N16	E45	2		229	0400	0419			
1									1				
12	1750	1859	1806	N15	W41	2+	99	234	1809	1814		3	135-1
13	No Fla	re Report	ed]				
14	1245	1450	_	N18	E78	3	100						
	1100	48-0	1140	N17	E50	3	101						
16	1125	1238	1140	MIA	EJU	J	1.01						
L							1						

2.11-9 0

	SPI	ECTRAL O	BSERVAT	IONS TYPE	IV		SINC	GLE FREG	QUENCY R	ADIO EMIS	SIONS	
Obs.	Beg. UT	End UT	Max. Int.	Freq. Range	Obsev. Ref.	Freq.	Туре	Beg. UT	End UT	Max. UT	Flux	Obs.
	0736 0735				44 16, 27	1420 600 545 231 200	CD CD CD CD	0736 0737 0735 0745 0735	0751 0752 0804 0759 0806	0741 0745 - 0754	626 579 <u>300</u> 6200 <u>208</u>	Syd Syd Hol AOP Hol
						9400 3000 600	SD CD CD	0454 0442 0419	0544 0522 0421.8	0501 0456 0419	(19) 409 48	Nag Tok Syd
					į	9500 3750 1000 200	ECD CD F ESD	0621 0620 0608 0553.3	0628 0626 0610 0553.7	0624 0622.9 0609.2	694 (120) (170) 3500	Tok Nag Nag Tok
Syd	0916				44	1500 600	CD ECD, CD	0805 0815	0812.5 0823	0804.5 0822	(316) 192	HHI Mos
						536 200 169	CD CD ECA	0801 0804 0804	0845 0825 0815	0813 - -	410 950 810	Pra Hol Ucc
Syd						9400 3750 2000 1000 600 545 200 200	ECD SD SD ESD CD CD CD CD	0545 0544 0544 0544 0545 0543 0543.5	0548 0547 0547 0547 0546.5 0545 0545	0545.4 0545.3 0545.5 0545.4 0545 - 0545.4	(870) (357) (154) (1600) 523 300 100 3000	Nag Nag Nag Nag Syd Hol Hol Tok
	!					9500 9500 9500 3000	CD ESD SD CD	2243 2333 2345.7 2345	2332 2333.5 2349.7 2350	2250 2333 2347 2346.3	653 589 807 556	Tok Tok Tok Tok
	1543	2337	3	580 - 10	0 Har, 38	2800 2800 2800 450 450	SD SD CD ECD ECD	1555 1607 1621 1602 1622	1655 1611 1631 1614 1631	1612 1608.3 1623 1612 1624	(14) (26) (42) 1200 2000	Ott Ott Ott NBS NBS
	1712	1808	3		27	2800 450 200	SD ECD CD	1716 1716 1716	1725 1748 1720	1718 1720 -	(224) 3700 500	Ott NBS Par
	2235				44	9500 1420 600 545 450 450 200	CD CD CD CD CD CD	2235 2236 2230 2235 2234.3 2239 2235	2308 2242 2330 2258 2238.9 2250 2244	2240 2240 2240 - 2236,3 2242	1023 952 623 2000 4700 3900 550	Tok Syd Syd Hol NBS NBS Hol
	1437	1520	3	580-100	Har, 38	2980 545 450 169	CD CD CD CAM	1441 1439 1436 1439	1451 1458 1459 1448	- 1447 -	602 1200 3400 600	Ned Ned NBS Ucc
Har,38						167	ECD	1821.8	824.5	1823	3000	NBS
	0245				44	9400 3750 3000 2000 1000 600 545 200 200	ECD ECD ESD ECD ECD CD SD SD	0245 0245.4 0245 0245.5 0246.5 0247 0244 0246 0248	0248 0250.4 0300 0248 0249.5 0251 0255 0347.2	0246.5 0246.3 0246 0246.5 0246.5 0248	(2400) (2650) 2300 (1690) (780) 258 300 1000 660	Nag Nag Tok Nag Nag Syd Hol Tok Hir
Har,38	2228 2232 2230	2255	3	330-100	16, 44 Har, 38 37	9500 1420 450 200	ECD SD ECD CD	2229 2230 2229 2230	2249 2237 2244 2238	2233 2230 2230 -	1322 916 3600 2500	Tok Syd NBS Hol

2.11-10

2.҈₩-10

											TABLE	IV	1
		FLA	RE						SF	ECTRAL C	BSERVATION	S TYP	E II
Gr. Day	Beg. UT	End UT	Max. UT	Pos	ition	Imp.	Flare Serial No.	Event No.	Beg. UT	End UT	Max. Int.	Freq. Range	:
Dec. 17	0734	1004	0737	N20	E41	2+							·
18	0408	0550	0500	N17	E26	3	102						
18	<u>0605</u>	0712	0624	N17	E20	3	103						
19	0757	1015	0801	N20	E13	2+	104	238	0803	0825	-	-	
	0540	0606	0545	NIE	F01	1.		241	0546	0551.7			1
20	0543	0606	0545	NIS	E01	1+		241	V340	0301.7			!
21	2232	2400	2251	N24	E50	3	105						
22	No Flar	e Report	ed					246					
22	1715	1821	1736	N18	W30	1+							,
22	2240	2332	2244	N20	W34	2							
23	<u>1436</u>	1557	1440	N18	W45	1+		249					
25	1812	1900	1822	S 07	W70			258	1822.2	1825	3	230-	-100
26	No Flar	e Patrol											
28	2229	2331		N25	W 50	2		261	2231.5	2242	3+	330	-100

2.N-10

Syd Syd		SP	ECTRAL O	BSERVAT	IONS TY	PE IV		SING	LE FREQ	UENCY RA	DIO EMISS	SIONS	
1205	Obs.						Freq.	Туре				Flux	Obs.
1205	Svd												
	-,-	1205		Δ		44	2800	en.	1205	1919	1 207	(550)	0#
Syd		1203		A		11	1500	CD	1204	1221	1208	(247)	нні
Syd	ı												
Syd Syd	Svd						3000	SD			0422		
Syd	٥,٠												
Syd Syd													
Syd							9500	CD	0607	0618	0608	1112	Tok
Syd 0406							545	CD	0608	0610	-	200	Hol
	Syd												
1420 SD 0458 0459 0459 162 Syd 162 162 Syd 1													
Syd O406							1420	SD	0458	0459		162	Syd
Syd Syd											-		
Syd Syd							9500	CD	0525	0645	0545	483	Tok
Syd							3000	CA	0522	0600	0542	537	Tok
Syd													
1350 1350 1350 1360 1361	Svd						9500	ECD	0042	0052	0045	517	Tok
Syd O406	-,						3750	SD	0042	0049	0045	(135)	Nag
Syd													
Syd							200	SD	0050.2	0050.7	-	1700	Tok
1750 200												_	
0750	Syd	0406				44							
0750							3000	CD	0406	0436	0409	870	Tok
2980 CD 0754 0808 - 560 Ned													
2980 CD 0754 0808 - 560 Ned		0750				44	9400	CD	0750	0855	0759	(800)	нні
231 CD 0800,2 0803,8 0802,5 1800 ADP APP A		0.00					2980	CD	0754	0808		560	Ned
200 CD 0758 0810 - 180 Ned											0802.5		
16											-		
1903 27, 52		0857		В			9400	CD	0857	1003	0903.5	(543)	нні
231 SA 0901 0958 - 1400 AOP	ļ												
208 ECD		0903				21, 02	231		0901	0958	-	1400	
1811 1931 3 580-100 Har, 27, 38 450 CD 1810 1832 1819 5900 NBS													
1811 1931 3 580-100 Har, 27, 38 450 CD 1810 1832 1819 5900 NBS							200	CA	0850	0955	-	50000	
Syd											-		
Syd 200 CA 0415 0655 0623 550 Tok	,					07 00							
Syd 9500 SD 0047 0247 0208 488 Tok 9500 CD 0549 0559 0555 541 Tok 3000 CD 0548 0556 0552 375 Tok Syd 9500 CD 0548 0556 0552 375 Tok 9500 CD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 1000 F 0401 0403 0406 (82) Nag Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0153 0240 0232 (1530) Nag 3750 CA 0153 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0153 0240 0232 (630) Nag 3750 CA 0155	ĺ	1811	1931	3	580-10	ю наг, <i>21</i> , зо	450	CD	1810	1832	1819	5900	NBS
9500 CD 0549 0559 0555 541 Tok 3000 CD 0548 0556 0552 375 Tok 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0403 0406 (82) Nag 1000 F 0401 0403 0406 (82) Nag Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned	Syd						200	CA	0415	0655	0623	550	Tok
Syd Syd 9500 CD 0548 0556 0552 375 Tok 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 201 ECD 1758 1811.5 - 54 Cor 201 ECD 1758 0256 0205 2275 Tok 201 ECD 1758 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1301 1242 (397) HHI 600 ESA 1237 1301 1242 1300 AOP 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1147 1141 280 Cra 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1147 1141 280 Cra	Syd						9500	SD	0047	0247	0208	488	Tok
Syd 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0409 0406 (82) Nag 1000 F 0401 0409 0406 (82) Nag 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153													
Har, 38 Har, 38 Har, 38 A 44 9400 CD 1228 1235 A 44 9400 CD 1228 1236 CD 1230 1323 1240 1328 A 44 9500 CD 1230 1323 1240 1324 1335 A 44 9500 CD 1230 1323 1240 1324 1300 1326 A 1237 1301 1242 1300 AOP 135 A 44 9800 CD 1135 1210 136 Ned 13750 A 44 9800 CD 1135 1210 136 Ned 13750 A 44 9800 CD 1135 1210 136 Ned													
Har, 38 Har, 38 1000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0402 0406 (82) Nag 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 10153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3700 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 230 (CD 1238 1255 - 5000 Ned 130 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 130 ECD 1135 1210 - 366 Ned 130 ECD 1135 1210 - 366 Ned 130 ECD 1139 1147 1141 280 Cra	Syd												
Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned							2000	SD	0349	0355	0352	(19)	Nag
201 ECD 1758 1811.5 - <u>54</u> Cor 10153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - <u>5000</u> Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra													
0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra	Har, 38						2800 201						
9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok		0152				44							
1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra	ļ	0103				44	9400	CA	0155	0237	0205	(1530)	Nag
1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra													Nag Tok
1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra							3000	CA	4199	0303	0202	-100	. JR
1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra				Α									
1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1141 280 Cra						27	1500	CD	1230		1240	(397)	HHI
1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra							536	CD	1230	1316	1245	630	Pra
1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra							231	CD	1237				
810 ECD 1139 1147 1141 280 Cra		144-											
231 CD 1136 1148 1140 1300 AOP		1135		A		44	810	ECD	1139	1147	1141	280	Cra
ZUU CD 1136 1145 - 50000 Ned							231 200	CD CD	1136 1136	1148 1145	1140	1300 50000	AOP Ned

2.11-9 @

TABLE V. CATALOGUE OF GEOMAGNETIC STORMS DURING 1957

This catalogue has been prepared from geomagnetic storm data from many sources. Data derived from papers published in the scientific literature are referenced in the last column of the table. The lists of sudden commencement storms published in the Journal of Geophysical Research (ref. 5, 67). The Annals of the IGY (ref. 50) and Bulletins 12 1, published by the IAGA (ref. 4) have been used to obtain the basic list.

The table has been set up in several sections that will be described in some detail under the column headings; these sections are as follows:

- 1. General storm classification.
- 2. Number of observatories reporting the storm and type of storm reported (from ref. 4).
- 3. Sudden commencement reports in references 4, 67, 5 and 50.
- 4. Planetary three hour Greenwich interval indices during the storm.
- 5. Values for D, H, and Z and other storm data from six selected magnetic observatories.

		<u> Geogra</u>	phic	Geoma	gnetic
		Lat.	Long.	Lat.	Long.
Co	College Alaska	N64°52'	212 ⁰ 10'	N64.5	255.4
Fr	Fredericksburg	N38012'	2820381	N49.6	349.9
Gr*	Greenwich	N51°00'	355°31'	N54.6	79.0
Но	Honolulu	N21°18'	2010541	N21.1	266.5
Si	Sitka	N57°04'	2240401	N60.0	275.4
Tu	Tucson	N32 ⁰ 15'	249 ⁰ 10'	N40.4	312.2

^{*}Data published by the Royal Greenwich Observatory in reference 21.

The column heading, together with any necessary descriptions or definitions, follows:

Column 1 Greenwich Day

GENERAL STORM CLASSIFICATION (Columns 2 through 7)

Column 2 Onset time UT

Column 3 End, Greenwich day/UT

Column 4 Type, g - gradual, sc - sudden commencement

- Column 5 Maximum intensity, m moderate (K index as great as 5)
 ms = moderately severe (K = 6 or 7), s = severe (K = 8 or 9).
- Column 6 Maximum three hour Kp
- $\frac{\text{Column 7}}{K_D} = \frac{\text{Average storm } K_D}{\text{Ko for the period shown in Columns 2 and 3.}}$

NUMBER OF OBSERVATORIES REPORTING THE GEOMAGNETIC STORM (Columns 8 through 20)

These data have been taken from the IAGA Bulletin 12 1 (ref. 4). The names of the observatories reporting in each category are given in that reference. The meanings of the column symbols follow:

- A The phenomenon is a very distinct ssc
- B It is a fair, ordinary, but unmistakable ssc
- C It is a doubtful ssc
- D The ssc was decidely not recorded on the magnetogram although the records were satisfactory
- E The phenomenon cannot be discovered because of heavy disturbance.
- X The recording is missing

Other observatories have classified the phenomena in question with the following symbols:

- si Sudden geomagnetic change or impulse
- b Clear and isolated bays appearing during calm periods without pulsations or sharp beginnings.
- bs Bay with sharp beginnings without pulsations
- bp Bay with pulsation without sharp beginnings
- bps Bay with pulsation and sharp beginning
- pt Train of pulsations consisting of several series of oscillations.
- pg Giant pulsations

The number of observatories reporting in each of the categories is given.

NUMBER OF ssc IN THE PUBLISHED LISTS (Columns 21 through 24)

Column 21 From reference 4. This is the sum of the A's and B's, Columns 8 and 9.

Column 22 From reference 67

Column 23 From reference 5

Column 24 From reference 50

PLANETARY THREE-HOUR INDICES AND OTHER DATA DURING THE STORM PERIOD

- Column 25 Planetary three-hour indices
- Column 26 Sum of the Kp for the Greenwich day
- Column 27 Ap for the Greenwich day
- Column 28 The Greenwich day and three hour interval with the first $\frac{K_0 \ge 4}{1}$
- Column 29 The Greenwich day and the first three-hour interval in which the Kp for three consecutive intervals was less than 4-

Geomagnetic data for the six selected observatories listed on page 2.V-i, with the exception of the Greenwich (Gr) data, the values given in Columns 30 through 36 were taken from reference 67. The Greenwich data were published in <u>The Observatory</u> Vol 78 (1958) 40-42 (Ref. 21).

- Column 30 D-Magnetic Declination this is the azimuth of the horizontal component or the magnetic intensity measured from the geographic north towards the east from 0 to 360.

 Unit in minutes of Arc.
- Column 31 H-Horizontal Intensity. The magnitude of the horizontal component, always considered as positive. In units of gammas (10⁻⁵ gauss)
- Column 32 Z-Vertical Intensity. The magnitude of the vertical component. Positives if downward, negatives if upward, in units of gammas (10⁻⁵ gauss)
- Column 33 Onset Time. This is the time reported by the observatory.
- Column 34 End Time. Reported by the observatory (Greenwich Day/UT)
- Column 36 Name of the Observatory. The code is given on page 2.V-i.
- Column 37 Range of Starting Time.
- Column 38 Sources. These are the published sources for the data given in this table. In many cases these references give relations of the storms to other phenomena, such as a solar flare, polar cap absorption, etc.

TABLE V-A. MAJOR GEOMAGNETIC STORMS DURING 1957

A list of all storms during 1957 with at least one $K_{\rm p}$ equal to or greater than 7+ is given on Table V-A, page 2.V-4. These data are taken from page 217, reference 4.

Part Dec Code C			T						г																	,					
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Date	Onset	End	Туре			Storm	А	E	3 C		E	х	si	b	bs	bp	bps	pt	pg	4	67	5	50	1					
3 10 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		0910	03/03xx	sc	m	5+	4 o	45	1	.0	1 -	-	3	-	-	-	-	-	-	_	55	11	43							
4 21									:			-		-	-	-	:	-	-	-	-		1	-		3+	4+	5 o	40	40	4 o
6 24 1008 1 100 271500 so m 5 50 31 12 - 4 1 9 - 1		22							42										-	-	-					8+	7-	6+	5-	5- 4o	6- 40
Second S				- 25/10xx		- m	- 5+	- 50												-	-					40	5-	2-	3-	3+	3-
03	8	- 1	1313	30/21xx	sc	ms	6-	5+	27	2	6 (3 -	-	-	-	-	1	-	-	-	-	53	10	40							
12 13 2 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		03 04													7 2		3	-		-						2- 40	2+ 3+	1 - 30	10 4-	20 50	2+
12 13 14 0629 14/0622 sc ms 6. 4. 14 21 13 7 3 - 2 35 4 12 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	11	12	1850	14/09xx	sc	ms	6+	4+	24	19	9 3	: -	_	1	9	-	3	_	_	-	-	43	9	37		2+	4+	3+	3-	2 o	20
13 22			0939	14/04xx	sc	ms	6+	4+	14	21	l 13	. 7	3	-	2	-	-	-	-	-		35	4	12		3+	5-	4-	5 o	5+	5 0
14 01 1014 04/06xx sc,g s s s s s s s s s s s s s s s s s s s			1807	24/14xx	sc	ms	70	60	47	8	3 -	3	2	-	-	•	-	-	-	•	-	55	15	43		4-	4-	3 o	2 o	3-	3 o
16 10 0023 10/21xx sc ms 7- 50	14	01 02 03	1614	04/06xx	sc,g		8+	5 0	13	2!	5 11	. 7	1	1	1	-	1	-	•	-	-	38	12	25		6o 5o	8+ 5+	8+ 5+	70 3+	7- 30	5+ 4+
18	16	10		10/21xx					- 33	- 24	- 1 -		-	2	_	-	- 1	-	-	-	-				:	5+	7-	7-	6-	5-	5+
24 19 25 1010 25/16xx sc ms 60 5- 14 32 15 1 46 6 22 30 20 2 10 10 4 60 5- 5- 2- 20 20 20 26 1050 30/09xx sc sc sc sc sc sc sc	18	16							3	14	ł 24 -	15	-	1 -	-	-	:	1 -						7	:	5 0	4+	4+	2+	3 o	4-
20 26			0130	25/16жх	sc	ms	6 o	5-	14	32	: 15	1	-	-	-	-	-	-	-	•	-	46	6	22	ļ	3 o	2 o	2+	2-	10	1 o
25 05	21 22 23 24	27 28 29	1136 0412 0336	30/09xx - 30/05xx	sc - sc	s s s	8- 8- 8-	6- 6- 6-	13 - 50	17 20 -	7 24) 14 -) -	- - -	2 - -	1 - 2	3 - -	-	-	-	-	-	-	33 - 60	3 0 14	19 2 45		4+ 70 3+	4- 7- 5+	30 6+ 4+	40 6- 40	5- 3+ 70	4+ 40 8-
27 15 16 2048 16/06xx sc ms 6- 5- 18 25 8 3 - 2 5 1 43 4 34 0+ 20 20 30 3+ 20 3 4+ 40 2+ 2+ 3- 3+ 3 3 20 3 3+	25							- 4+	-	-	-		-	-	-	-	-	-	-	-	-	-								6-	5 0
28 17			2048	16/06xx	sc	ms	6-	5-	18	25	5 8	3	-	2	5	1	_	_	-	-	-	43	4	34							
29 18 1508 20/06xx sc,g ms 7- 5+ 16 20 13 1 11 36 5 12 35 0 7 6+ 4- 30 4- 2+ 6- 5 5 5 5 2			1136	20/06xx	sc	s	8-	5 0	50	11		-	-	-	-	-	-	-	-	-	-	61	13	45		4+	4 o	2+	2+	3-	3+
31 26 0201 27/10xx sc m 50 40	30	18 19							16 22	20 13	13	1 3	-	-	11 18	-	-	-		-	-					6+ 6+	6+	7-	4+	5-	5 o
50 40 4- 3+ 3+ 2+ 2			0201	27/10xx	sc	m	50	4 o	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-		2 o	3 o	3+	40	5-	5-

															—-т		т
Gr. Int			8		∑Kp	Ap	Kp Interval 1st Kp≥4- Date/Interval	Time Where 3 Consecutive Kp44- Day/Interval	D	н	z	Onset	End	Max. Kp	Obs.	Range of Starting Times	References
3+	2+	- 2	+ 20	,	22-	13	21/4	21/5	-	-	-	-	-	-	-	-	34
5- 10	5- 10		- 3c + 2+		29+ 17+	28 10	30/4	30/8	28 41 16	124 371 97	86 405 26	29/0822 30/0823 30/0822	31/06xx 31/06xx 31/06xx	5 6 5	Fr Si Tu	29/0922 - 30/0823	
4+ 30	4+	5	- 6-		32+ 36-	33 38	03/2	07/2	19	108	71	03/03жх	06/12xx	5	Tu	03/03xx - 06/2029	
2+ 3+ 1-	40 3- 1-	- 4	+ 50)	31- 34- 14+	29 33 9			12 10	165 121	29 25	06/2029 06/2029	07/03xx 07/08xx	6 5	Fr Tu		
4-	5 a	4	- 2-	-	25+	19	15/5	15/8	-	-	-	-	-	-	-	-	
20 5- 70 40		· 6		+	22- 370 48- 25-	14 41 84 17	24/1 25/1	24/4 27/1	250 30 270 8 179	1510 290 25 130 1520 135	1270 151 205 100 811 53	25/0045 25/0047 25/0047 25/0048 25/0047 25/0046	27/03xx 27/01xx - 27/07xx 27/04xx 28/15xx	- 6 6 - 5 8 5	Co Fr Gr Ho Si Tu	24/0340 - 25/0048	34,52
20 80			o 2 o 8		11- 55-	5 150	30/2	02/1	213 450 10	1660 48 240	830 365 75	29/2346 30/0528 30/0529	01/10xx - 01/22xx	9 - 6	Si Gr Ho	29/2346 - 30/0529	10,16,23,28,52
2-	5-	- 7	o 5	o	43 o	83	30/2	02/1	11 10	211 90	36 30	30/0528 01/16xx 01/1746	- 01/22xx 01/24xx	- 7 6	Tu Fr Tu	01/16xx - 01/1747	28
8o 5+			- 2 + 3		32+ 300	55 30	02/4	03/6	150 33 176 16	1390 200 1333 117	740 174 821 86	02/0857 02/0857 02/0858 02/0857	03/15xx 03/15xx 03/15xx 03/15xx	6 6 9	Co Fr Si Tu	02/0857 - 03/0150	16,22,28,33,36,42, 46,52
10 3+ 20	20	o 3	- 5 o 6 + 2	-	15- 38- 17+	12 56 9	04/7	05/5	230 3 118 21	1630 180 1208 162	1130 35 641 19	05/0043 05/0045 05/0043 05/0043	05/17xx 05/13xx 06/02xx 05/15xx	7 7 8 7	Co Ho Si Tu	04/2342 - 05/0045	10,16,28,34,46 22,23,28,33,42,52
3 -	. 4	o 4	to 3	o	23-	16	16/4	16/8	-	-	-	-	-	-	-		22,28,33,36,42
40 20			5- 4 2+ 4		30+ 19+	25 11	19/5	20/1	-	-	-	-	-	-	-	0519 - 1344	22,28,33,42,52
3 -			6- 4 1- 3		29+ 150	26 11	22/3	23/3	42 16	216 122	302 40	22/0419 22/0418	23/06xx 23/07xx	5 5	Si Tu		22,28,33,36,42
1a 1a	2		40 3 l+ 1		12- 120	8 6	27/7	27/8	-	-	-	-	-	-	-		22,28,33,34,36, 42,52
20 10			5+ 4 10 2		26- 15+	27 12	03/6	04/2	90 180 55 15	730 35 186 138	410 70 137 49	03/1557 03/1559 03/1557 03/1557	04/10xx - 04/07xx 04/09xx	5	Co Gr Si Tu		22,23,28,33,36, 37,42
40 20	· 4		4+ 4 10 1		33o 15-	31 8	06/2	07/1	11	41	16	06/0508	06/15xx	5	Tu		22,23,28,33,36,42
5	- 2	eo :	2 o :	3+	23 o	16	09/5	09/6	-		-	-	-	-			28,33,34,36
4.	- 3	lo '	4- 3	lo	330	33	12/2	13/8	280 27 15 16	1930 122 111 85	1340 90 44 13	12/0200 12/0240 12/01xx 13/0019	13/24xx 13/14xx 13/06xx 13/13xx	5 5	Co Fr Tu Tu	12/01xx - 13/0619	28,33
2	+ 4	4-	1+	۱-	23+	19	21/1	21/3	14	22	56	0248	21/08xx	5	Hr		28
2	0 1	1 +	7- (30	22-	28 .	29/7	30/7	180 28 225	215		29/1900	30/21xx 30/14xx		Co Fr Gr	29/1135 - 29/1921	10,34 16,22,23,28,32,33, 36,37,42,46,52
2	o f	5-	30	1 0	32-	38			4 79 22	120 435		29/1921 29/1921	30/20xx 30/12xx 30/15xx	6	Ho Si Tu		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 3			70 : 20 :		30- 28+	36 28	31/5	01/5	110 200 59 17	25 493	130 343	31/13xx 31/12xx	01/16xx - 01/15xx	-	Co Gr Si Tu	1200 - 1812	37 10,16,22,28,33,34,42 10,16,22,23,28,33,
7 8			8- 60		49- 540	102 135	02/2	07/3	460 50 465 11 241 48	481 75 180 1683	522 375 55 1008	02/0315 02/0315 02/0315 02/0315	04/06xx 04/06xx - 04/06xx 04/06xx 04/09xx	6 6 9	Co Fr Gr Ho Si Tu	02/0300 - 03/1233	34,36,37,42,46,52 16,23

_2

							Τ													ī				<u> </u>		
erial Date No.	Onset	End	Туре	Max. Int.	Max. Kp	Average Storm Kp	A	В	C	D	E	х	si	b	bs	bp	bps	pt	pg	4	67	5	50	1	Th	ree 3
May 32 21	0910	-	-	-	-	-	8	23	5	8	1	4	13	-	-	-	-	-	-	31	-	18		2+	3 o	3-
33 30	0822	31/06xx	sc	m	5+	40	32	26	1	-	-	3	-	-	-	•	-	-	-	58	11	44			1+ 4-	
June 34 03 04 05 35 06	0457 2029	07/03xx 07/03xx	_	ms m	6- 50	4+ 4+	- -	3	7	46	1	-	-	-	-	-	-	4	-	3	1 2	2		5- 6- 4+	4- 5+ 4- 50 20	4- 36 5-
07 36 15	1358		sc	m	5 0	-	6	17	18	11	1	2	5	1	1	_	_	_	_	23	_	13			3 ₀	
37 24 38 25 26 27	0340 0046	- 27/01xx	sc	ms	40 70	- 5+	6	24		7	1	-	11		-		-		-	30	12	15		40 5- 50	3+ 4-	4- 3+ 6+
39 29 40 30	2346 0528	01/10xx 01/22xx		s s	8+ 8+	6+ 7-	45	- 9	-	1	-	3	5	-	-	-	-	-	-	- 54	1 12				10 6+	
July 41 01	1747	01/24xx	sc,g	ms	7+	6-	9	21	16	10	-	5	2	-	1		-	-	-	30	2	7		7+	7+	7-
42 02 43 03	0857 0150	03/15xx 03/15xx		s ms	8o 6-	50 5-	42	15 -	2	-	-	4	-	-	-	-	-	-	:	57		42 -			10 4+	
44 04 45 05 06	2342 0042	- 05/15xx	sc sc	ms ms	7+ 7+	- 5 -		19 24		14 4		1	3 6		1	1	2	-	-			14 21		5-	1- 7+ 3-	60
46 16	0714	-	sc	_	40	-	28	26	3	-	-	5	1	_	_	-	-	_	_	54	2	44	53	1+	0+	3
47 19 48	0519 1344	-	sc sc	m m	5 - 5 -	-			17 17			- 1	2 5	3	-	-	-	-	1		-	2 27			3 0	
49 22	0419	23/06xx	sc,g	ms	6-	40	15	29	13	2	-	4	-	-	-	-	1	-		34	6	34	38	2-	30 3+ 5-	4
23 50 27	1959	-	sc	-	4 o	-	27	35	2	-	-		_	-	-	-	-	-	-	62	-	41	56	0+	10 2-	0
Aug. 51 03	1557	04/03xx	sc	ms	6+	5+	53	11	-	1	-	-	-	-	-	-	-	-	-	64	8	55	69	3-	10 - 20	2
52 06	0508	06/2 4 xx	sc	ms	6-	4+	26	28	5	4	-	-	2	-	-	-	-	-	-	54	7	42	53		4+ 20	
53 09	1347	-	sc	m	5-	-	34	13	6	-	-	. 2	8	-	1	-	-	-	-	47	-	41	63	40	3+	2
54 13	0617	13/21xx	sc	ms	6-	4 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	-	4+	- 5+	•
55 21	0248	21/08xx	sc	m	5+	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	40	5+	- ;
56 29 57 30	1909 1920	30/21xx 30/21xx		ms ms	7- 7-	50 50	6 51		25	19	-	3	1 3	1	-	1	-	-	-	16 60			- 68		+ 1+ - 6·	
58 31 59 60	1229 1414 1812	01/15xx 01/15xx 01/15xx	g	ms	70 70 70	50 50 5+	- - 26	- - 19	- 3	- 4	- - 3	2	- - 7	-	- 1	-	-	:	-	- - 45		- 2 28	- - 40		o 3- - 6-	
Sept. 61 02 62 03	0314 1233	04/06xx -	sc -	s s	9- 9-	6 + -	35	27	2	-	-	1	-	-	-	-	-	-	-	62	18		70	3	- 6d - 6	9

2. I-2 O

2.

NETIC STORMS DURING 1957

												1	,
8	∑Kp	Ap	Kp Interval 1st Kp:4- Date/Interval	Time Where 3 Consecutive Kp: 4- Day/Interval	D	н	z	Onset	End	Max, Kp	Obs.	Range of Starting Times	References
50 2-	27- 18+	25 10	02/4	03/2	22 2 12	118 80 156	45 15 36	0909 0910 0910	03/01xx 03/03xx 03/06xx	5 5 5	Fr Ho Tu	-	
4- 5- 20	210 34- 22-	13 31 15	09/5	11/2	140 41	1180 294	710 369	09/1224 10/06xx	11/17xx 11/01xx	6 5	Co Si	09/12xx - 10/06xx	
9- 2+ 3+	390 39+ 310	82 70 26	21/3	22/7	95 625 5 25	820 103 270 329	650 625 110 89	21/1255 21/1255 21/1255 21/1256	24/06xx - 21/01xx 24/00xx	9 - 7 7	Fr Gr Ho Tu	0800 - 1255	32,34,52
50 40	29+ 27-	27 22	24/7	25/4	-	-	-	-	-	-		<u>.</u>	
40 3-	27- 340	24 36	29/5	30/8	200 27 80	1300 126 666	820 79 496	0950 1313 13xx	30/22xx 30/21xx 30/21xx	7 5 7	Co Fr Si	0950 - 13хх	37
4+	180	12	/-										
5+ 3+	330 35+	31 39	03/7	04/7	220 20 95	1290 91 1092	1030 82 512	1048 11xx 11xx	05/18xx 05/23xx 05/20xx	6 5 7	Co Fr Si	0003 - 11хх	
3- 3+	23o 37-	15	12/7	13/8	26 12	112 98	56 35	12/1850 12/1851	14/09xx 14/09xx	5 6	Fr Tu	12/1850 - 13/0939	
1-	14+	43 8	12/7	13/8	340 81	1920 737	1040 540	13/04xx 13/04xx	14/04xx 14/00xx	7 7	Co Si		37
60 20	30o 38o	32 62	23/7	24/6	460 36 175 4 216 20	2100 194 35 200 1178 176	1180 212 135 30 1017 70	1806 1807 1806 1808 1807 1806	- 25/04xx - 24/14xx 24/20xx 24/15xx	7 7 - 5 9 6	Co Fr Gr Ho Si Tu	1806 - 1808	37,52
5- 7- 3- 30	21- 55- 32+ 21+	16 132 32 14	01/6	04/3	260 42 305 10 206 22	1480 604 68 420 1376 330	940 438 325 75 1017 81	01/1000 01/1609 02/02xx 01/1600 01/1245 01/1609	04/15xx 02/09xx - 04/06xx 03/21xx 04/08xx	7 9 - 7 8 7	Co Fr Gr Ho Si Tu	01/1000 - 02/02xx	37,52
5- 20 30	30+ 40- 24-	25 58 17	09/2	10/7	270 28 165 4 229	1570 253 43 200 1251 188	950 238 160 35 849 62	0023 0023 00xx 0025 0023 0023	11/06xx 11/07xx - 11/07xx 11/05xx 11/08xx	7 6 - 6 9	Co Fr Gr Ho Si Tu	00xx - 0323	
4+ 5+ 3-	18+ 340 24-	11 37 15	15/8	17/1	."	-	-	-	-	-	-	15/1938 - 16/1600	
4- 10	18+ 29+	11 31	24/7	25/6	19 105 12	980 89	45 580 29	0130 00xx 0130	25/16xx 25/19xx 25/16xx	5 8 5	Fr Si Tu	00xx - 0130	
4- 70 1+	20+ 36+ 37-	13 44 58	26/5	28/7	36 160 7 90	222 47 210 1150	246 95 35 743	26/1050 27/1136 27/1200 28/0336	30/09xx - 30/09xx 30/05xx	6 - 6 8	Fr Gr Ho Si	26/1050 - 29/1315	
60° 3+	44o 25o	77 21	29/2	30/3	360 310 21	1430 48 169	990 155 50	29/0337 29/0336 29/0337	30/05xx - 30/11xx	7 - 7	Co Gr Tu		
50 ^ 1-	34+ 26o	37 27	05/1	06/5	21 7 4	107 931	71 558	05/1000 05/10xx	06/12xx 06/15xx	5 8	Fr Si	0707 - 10xx	34
6- 3+	22- 250	18 17	15/8	16/3	42 14	302 62	178 39	2048 2048	19/10xx 16/12xx	7 5	Fr Tu	-	
8-	380	55	17/2	20/3	290 10 62 31	62 235 299 245	135 90 149 59	17/1135 17/1137 17/1135 17/1136	- 20/12xx 18/06xx 20/09xx	- 6 6 7	Gr Ho Si Tu	17/1135 - 18/15xx	10,37,52
50 40 2+	350 420 23-	42 60 14			240 96	1490 1144	1080 624	18/1500 18/15xx	20/00xx 20/13xx	7 8	Co Si		10.37
30 3-	29- 26+	23 20	26/5	27/4	46	4.3	421	26/0201	27/10xx	6	Si		
													

Serial No.	Date	Onset	End	Туре	Max. Int.	Max. Kp	Average Storm Kp	A	В	c	מ	E	x	si	b	bs	bp	bps	pt	pg	4	67	5	50	1		Thre	e-hour	Gr. 1
63	Sept. 04 05	1300	06/06xx	sc	s	90	6+	52	8	3	-	-	2	_	-	-	-	-	-	-	60	18	50	72			2+ 7-		8+ 5-
64	06	1120	07/09xx	sc,g	ms	6-	4+	12	26	12	6	2	1	5	_	_	_	_	-	_	39	4	25	40	5-	5-	2+	5-	6-
	07 12 13 14 15	2154 0046	15/06xx 15/06xx		s s	9- 9-	5+ 5+		12 6		2 3		1 2	-2		-	1		-6	-		1 16			2- 8- 30	2- 8+ 3+	20 1+ 9- 5+ 20	20 9- 6+	20 20 70 5+ 20
67	21	1005	22/12xx	sc	ms	7+	60	58	6	-	-	-	-	-	-	-	-	-	-	-	64	15	47	72	3-	2-	1+	7+	6 o
68	22	1344	23/00xx	sc	s	9-	7 o	49	11	1	-	1	-	2	_	1	-	-	-		60	12	44	66	5-	6-	6-	5-	80
69	23 24 25	0235	25/15xx	sc,g	s	9-	5+	39	6	3	-	6	1	10	-	-	-	-	•	•	45	3	27	39	50	5 0	8- 4+ 5-	5-	8- 5+ 40
70	29 30 Oct. 01	0016	01/05жж	sc	s	9-	6-	39	22	1	1	-	-	•	-	-	-	-	-	•	61	18	48	73	40 6+	5+ 6-	50 5+ 30	4 + 6-	80 50 4-
71	02 03 04 05	1252	-	sc	m	5-	-	1	2	18	40	2	-	2	-	-	-	-	-	-	3	-	3	-	3- 30	20 30	2- 1+ 2+ 2-	3+ 3-	3- 4- 2+ 20
72	06	2055	-	-			-	-	6	18	28	-	-	4	-	-	-	-		-	6	-	3	-	l		1 ₀		0 0
73	09 10	1329	15/21xx	sc	•	40	4-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	2	-			2+ 40		2+ 2+
74 75	13 14 15	0035 0440	15/01xx 15/01xx		ms ms	6+ 6+	5- 5-	- 5	- 21	14	- 16	- 4	-1	2	-	-	-	1	-	-	- 26	7	3 21		4+	6+	30 6- 2-	5 0	3- 4+ 30
	21 22 23	2241	23/02xx	sc,g	ms	7-	4 o	40	10	2	-	2	•	10	-	1	•	-	-	-	50	5	53	61	4+	3 o	3- 4- 4-	4-	3 - 2 + 1 +
	Nov. 06	1821	07/12xx	sc	ms	7 o '	5o :	59	4	-	-	_	1	-	-	-	-	-	-	-	63	15	60	71			1+ 3+		20 3+
	08 09 10 11	0726	12/20xx	g	m	50	4+	-	8	19	32	1	3	2	-	-	-	-	-	-	8	1	3	-	40 50 40	4+ 4+ 4-	4- 5- 40 40 3-	3+ 4- 4-	4- 4+ 4- 40 40
79	18	0952	-	-	m	5+	-	-	3	6	54	1	-	-	-	_	-	1	-	-	3	-	2	-	4-	4 o	4 o	4+	5+
80	24 25	0901	28/15xx	sc,g	m	5+	3+	3	4	10	41	1	2	2	-	-	-	-	1	-	7	2	6	-			2+ 5+		3- 3+
	26 27 28	0155 0513 1410 1454	28/15xx 28/15xx 28/15xx 28/15xx	- g	ms ms ms	7- 7- 7- 7-	50 - 50 50		5 7	6 14 8 10	35	2 5 4 6	2 2 2 2	18 8 7 17	-	-	1	1	-	:	8	3 - 2 1	2	-	50 6+	50 6+	50 50 50	4- 50	4+ 3+ 40
	Dec. 01	0231 0336	02/15xx 02/15xx		ms ms	6- 6-	4- 4-	- 6	- 22	- 22	- 9	- 1	3	3	-	-	-	-	-	-	28	2 4	3 14		5-	6-	5-	4-	30 4-

erval	8	≚Кр	Ap	Kp Interval 1st Kp:4- Date/Interval	Time Where 3 Consecutive Kp [.] 4- Day/Interval	D	Н	z	Onset	End	Max. Kp	Obs,	Range of Starting Times	References
3- 2 0	2+	22-	13	03/5	03/6	-	-	-		-	-		0335 - 0550	
4- 5- 4+ 4-	4- 3-	31+ 32-	26 28	05/1	06/8	300 47	1180 477	750 3 2 6	05/0700 05/04xx	06/23xx 06/21xx	7 6	Co Si	04/2108 - 05/0700	28,33
2+ 3+		27- 22+ 27- 200	22 13 20 11	15/4	15/7	130 45	1000 281	630 365	15/0800 15/0800	15/21xx 15/20xx		Co Si	0048 - 0800	28
30 4+ 3- 3+	4-	27o 27o	20 20	19/4	20/3	-	-	-	-	-	-			16,28,32,33,36
20 10 5+ 6-	1+ 6-	23+	18	30/3	30/6	71	647	366	30/0410	30/21xx	7	Si		28 37
	40 2-	41+ 380 27-	53 48 20	31/1	02/5	280 26 157 15	1900 134 1309 140	1090 127 861 48	31, 0300 31/02xx 31/0117 31/0115	02/22xx 02/13xx 02/21xx 02/15xx	8 6 8 6	Co Fr Si Tu	30/0410 - 31/1635	10,16,28,33,37

MAGNETIC STORMS 1957

ecutiv 3	re 3hr. 4	- Kp's 5	No. Kp 6	· 5-, At 7	Least One 8	Kp 7+	2	3	4	5	6	7	8	1		2		F	Ąр			orm No. Cable V
6+	5-														•			82	70	·-		5
8+	70	7-	5+	6+	7-	50	5+	5+										16	132			14
•																		77	21			24
																		55	42			28
7-																		150	83			40
																		55				42
																	12	56				45
6+	7.	80	9-	60	5-													102	135			61
7-	50	5-																145	112			63
																		160				66
6-	5-	80	8+	5 0	70	80	9-	8-	8 -	8 -	7 -	7-	50	5	()	50		74	104	164	33	67
5+	6-	50	5 0															139	56			70

Onset	End '	Гуре	Max. Int.	Max. Kp	Average Storm Kp	A	В	С	D	Е	х	si	b	bs	bp	bps	pt	pg	4	67	5	50	1				r Gr
0335 0550	-	-	m m	4- 4-	-	-	-	-	-	- -	<u>-</u>	-	-	-	-	-	-	-	-	-			2 0	2+	3+	3+	
0331	06, 21xx	sc	m	5-	40	-	3	4	53	1	3	1	-	-	-	1	-	-	3	1	7	-					
0048	18/12xx	sc	m	5-	3 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	30 4-	3- 4+	2+ 5-	2+ 2+	
0937	20, 23xx	sc	m	5-	3+	16	26	7	3	2	-	11	-	-	-	-	-	-	42	5	37	43					
0410 0120 0514 1635	02, 15xx 02, 15xx	sc,g g	m nis nis nis	5 - 6 + 6 + 6 +	4- 5- 5- 5-	- - 4			16	2 1 10	- 2 4 4	1 14 5	- 1	- 1 - 2	-	-	-	-	11	1	7	-	40	5 0	6-	5+	
	0335 0550 0331 0048 0937	0335 - 0550 - 0331 06 21xx 0048 18 12xx 0937 20, 23xx 0410 30, 21xx 0120 02 15xx 0120 02 15xx 0514 02 15xx	0335	0335 m 0550 m 0331 06 21xx sc m 0048 18/12xx sc m 0937 20, 23xx sc m 0410 30, 21xx sc m 0120 02 15xx sc,g ms 0514 02 15xx g ms	0335 m 4- 0550 m 4- 0331 06 21xx sc m 5- 0048 18/12xx sc m 5- 0937 20/23xx sc m 5- 0410 30/21xx sc m 5- 0120 02 15xx sc,g ms 6+ 0514 02 15xx g ms 6+	Onset Find Type Max. Max. Storm Int. Kp Storm Kp O335 m 4 O550 m 4 O331 06 21xx sc m 5- 40 O048 18/12xx sc m 5- 30 O937 20, 23xx sc m 5- 3+ O410 30, 21xx sc m 5- 4- O120 02 15xx sc g ms 6+ 5- O514 02 15xx g ms 6+ 5-	Onset End Type Max. Max. Storm Int. Kp Storm Kp 0335 m 4	Onset c.m. Type Max. Max. Storm Rp O335 m 4	Onset c.nu type Max. Max. Storm Kp 10335 m 4	Onset End Type Max. Max. Storm Int. Kp Storm Kp O335 m 4	Onset E.M. Type Max. Max. Storm Int. Kp Storm Kp O335 m 4	Onset c.nu type Max. Max. Storm Kp Storm No. 2	Onset Fint Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4	Onset End Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4	Onset E.M. Type Max. Max. Storm Int. Kp Storm Kp O335 m 4	Onset c.m. Type Max. Max. Storm Rp 0335 m 4	Onset Find Type Max. Max. Int. Kp Storm Kp O335 m 4	Onset Find Type Max. Max. Storm Int. Kp	Onset Find Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4	Onset Find Type Max. Max. Storm Int. Kp Kp Kp A B C D E x SI b bs op bps pt pg 4 0335 m 4	Onset End Type Max. Max. Storm Int. Kp Kp Kp A B C B E X SI b Bs bp bps pr pg 4 br 0335	Onset End Type Max. Max. Storm Int. Kp Kp Kp A B C B E X SI b Bs B bps pr pg 4 67 5 0335 m 4 2 0550 m 4 2 0331 06.21xx sc m 5- 40 - 3 4 53 1 3 1 1 3 1 7 0048 18/12xx sc m 5- 30 1 0937 20,23xx sc m 5- 3+ 16 26 7 3 2 - 11 42 5 37 0410 30.21xx sc m 5- 4 5 10 44 2 2 1 - 1 5 8 3 0514 02:15xx gc ms 6+ 5 5 10 44 2 2 1 - 1 5 8 3 0514 02:15xx gc ms 6+ 5 111 1 7	Onset End Type Max. Max. Storm Int. Kp Max. Storm Kp	Onset Entil Type Max. Max. Storm Int. Kp Kp Kp	Onset Entil Type Max. Max. Storm Int. Kp Max. Max. Storm Kp	Onset End Type Max. Max. Storm Int. Kp Max. Max. Storm Int. Kp Kp	Onset Entitype Max. Max. Storm Int. Kp Kp Kp

TABLE V-A MAJOR GEO

Mο.	Day	Onset sc	1st 3hr 5	No 3hrs Intervals			Number 7+					90	8	1	2	3	4	5	6	7	8	1
Jan.	21	1255	21, 5	8	1			1		1	1							5-	6-	8-	9-	8+
Mar.	01	1614	01/8	12	1	1				2		!									5-	66
	29	1315	29, 5	6		1		1				ı						70	8 -	6+	60	6
Apr.	17	1136	17/7	3				1				,								60	8 -	6
June	30	0528	30/2	10	1		2	1	3	1		,			6+	5+	8-	80	80	8 0	8 +	7
July	02	0857	02, 4	4					1			,					5-	80	6+	6-		
	05	0042	04, 8	5			1					!	50	5-	7+	60	6-					
Sept.	02	0314	02/2	15	1	1	1	2	1		1	,			60	6+	5 ⊬	70	60	8 -	8 -	
	04	1300	04/5	9	1				1	3	1	1						8+	90	80	8+	
	13	0046	13/1	6		1		1		1	2			8-	8+	9-	9-	70	60			
	21	1005	21 4	23	5	1	1	3	2	1	1	,					7+	60	7-	7-	7-	
	29	0016	29/5	10					2	1	1	1						80	9-	8 +	80	

40 5+	8+ 60	≗Kp 470 49-	Ap	Kp Interval 1st Kp?4- Date/Interval	Time Where 3 Consecutive Kp-4- Day/Interval	D	н	z	Onset	End	Max. Kp	Obs.	Range of Starting	References
5+ 4+ 2+ 2- 2+ 1+ 60 40	60			00/0									Times	
2+ 2- 2+ 1+ 60 40		34 o	36	02/2	07/3	470 181 810 13 302 42 19	2460 884 91 340 2644 391 59	1640 854 800 75 1448 219	04/1300 04/1300 04/1300 04/1300 04/1300 04/1300 06/1121	07/05xx 07/05xx - 07/05xx 07/05xx 06/08xx 07/09xx	8 9 - 7 9 8 5	Co Fr Gr Ho Si Tu Tu		10,16,22,23,28,33, 34,36,37,42,46,52
6o 4o		20-	11			l "	95	41	00/1121	07/USXX	3	1.0		28,33
4 - 2.		15o 54+	7 160	13/1	15/3	400 104	2700 1344	2240 626	12/2400 13/0046	15/07xx 15/06xx	8 9	Co Fr	12/2154 - 13/0046	10,28,22,23,28,32,33,
2+ 30		34- 22+	38 14			705 11 277 40	46 460 3766 471	240 100 1011 92	13/0047 13/0047 13/0047 13/0048	14/14xx 15/06xx 15/06xx	9 9 8	Gr Ho Si Tu		16 34,36,37,42,46,52
7- 7-	7-	390	74	21/3	24/6	480 154 475 12 330 18	2850 926 68 400 2606 275	1700 748 650 85 1516 80	21/0800 21/1005 21/1005 21/1005 21/0840 21/1005	25/16xx - - 24/14xx 24/21xx	8 9 - 7 9 7	Co Fr Gr Ho Si Tu	21/0800 - 21/1005	16,22,23,28,33,34 36,37,42
+ 50	7 o	49 o	104			-	-	-	22/1345	25/15xx	-	Fr	22/1345 - 23/0236	10,22,23,28,33,34
7- 7-		58o	164			40 -	262	104	22/1345 23/0226	25/15xx	8	Tu Tu		36,42,52 16,28,33
30 3+ 2- 10		33- 23+	33 18											,
9- 8+ 50 40 2+ 4+	5-	52- 42- 27+	139 56 21	29/1	02/3	750 55 465 17 419 30	3310 444 67 240 2907 288	1660 282 520 90 1332 124	27/0016 27/0016 29/0015 29/0017 29/0016 29/0017	01/06xx 01/05xx - 01/05xx 01/05xx 01/09xx	9 7 - 6 9 7	Co Fr Gr Ho Si	0015 - 0017	10,16,22,23,28,33 34,36,42.52
+ 2- i- 4+ i- 30 i- 3-		20+ 250 22- 19+	12 19 12 10	03/5	03/8		-		29/0017	-	-	Tu -		33
o 0+	0+	4+	2	-	-	_	-	-	-	-	-			
+ 20 o 4-	2+ 3-	15o 26-	7 18	10/2	10/4	-	÷	-	-	-	-		09/1329 - 14/0440	33
+ 4+ + 40 - 3+	40 50 20	290 400 20+	26 50 12	13/7	15/1	180 30 89 15	1040 115 873 120	810 128 474 46	14/0400 14/01xx 14/01xx 13/1530	15/01xx 15/02xx 15/01xx 15/03xx	7 5 7 5	Co Fr Si Tu		22,28,33,42
0 4-	7-	27+	28	21/6	22/5	20	116	95	21/2241	23/02xx	6	Fr		10.15.00.00.00.00
+ 3- 5 40	4- 4-	27- 25+	19 20		, :	16	105	58	21/2241	-	6	Tu		10,16,22,23,28,32 33,34,36,42,52
- 6- - 2+	6+ 10	19+ 28~	24 31	06/7	07/5	115 26 205 7 66 11	740 182 29 190 373 203	390 67 170 55 298 67	06/1822 06/1821 06/1821 06/1821 06/1821 06/1821	07/21xx 07/12xx - 07/14xx 07/20xx 07/15xx	5 - 6 6 5	Co Fr Gr Ho Si Tu		10,22,23,28,33,36 42
30 30 4- 3+ 3- 20	4+ 30 4-	25- 33- 31- 28+ 250	18 29 26 21 17	08/3	12/7	190 46	1000 334	620 450	08/0700 08/05xx	12/20xx 12/00xx	6 6	Co Si	05xx - 0726	33
o 3e	2+	30 o	25	18/1	18/7	-	-	-	-	-	-			
o 3-	2+ 4-	21+ 33-	12	25/2	28/6	-	-	-	-	-	-			28,33
0	•	- Ju	30											10,16,22,28,32,3342,52
3+	40	43- 37+ 32-	64 47 28	26/1	28/6	36 145 -	178 53	94 170 -	26/14xx indefinite 26/1454	27/12xx - -	6 - -	Fr Gr Tu	26/0155 - 26/1454	33 23,28
2+	40	31 -	29	01/1	02/6	170	1026	510	01/0230	02/21xx	6	Co	01xx - 0336	16,22,33.42
2 0	2 0	25-	16	-	•	33	325	251	01/0233	01/23xx	5	Si	VIAA - 0000	
	40 3+ 40	37+ 32- 31-	47 28 29			145 - 170	53 - 1020	170 - 510	indefinite 26/1454 01/0230	- - 02/21xx	6	Gr Tu Co	26/0155 - 26/1454 01xx - 0336	33

2

2.12-3

TABLE VI. CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 1957

This table will include short wave radio fadeouts of importance 3 that lasted for 30 minutes or more, as well as S.W.F.'s that occur at the times of the major flares catalogued in Table I. All polar cap absorptions reported in the literature; Geomagnetic storms with a maximum $K_p > 5$; and Forbush decreases.

A brief note of explanation of the Forbush decrease data is necessary. The only published list of Forbush decreases with onset time and other data is given in reference 32. This is limited to large decreases at Mt. Washington. The decreases indicated by a date but no UT starting time are from volume 16 of the Annals of the IGY (Ref. 50). The list of cosmic ray storms (Forbush decreases) given in reference 33 has been used, but only those with a decrease of 2% or greater have been included. The starting time is indicated by the date with the hour. This is at best an approximation based on the ΔT_2 shown on Figure 1 and given in Table II of of reference 33. The duration in that reference is given in days indicated by the superscript d in column 34 of the catalogue. In general, the flare-Forbush decrease association is taken from reference 33.

The column headings together with any necessary description or definitions follow:

Column 1 Date

Column 2 Major Flare Serial Number from Table 2.I

Column 3 Event Serial Number from Table 2.VIII

FLARE DATA (Columns 4 through 8)

A few minor or sub flares are given when a clear association with an SWF or other terrestrial effect has been made in the literature.

Column 4 Flare Beginning Time

Column 5 Flare End

Column 6 Time of Maximum Intensity

Column 7 Heliographic Position of the Flare

Column 8 Flare Importance

SHORT WAVE FADE (Columns 9 through 13)

Column 9 Onset

Column 10 Importance. S.W.F.'s are given an importance rating on a scale from 1- to 3+, based on the amplitude of the fade, duration of the event, and confidence in the reality of the event.

Column 11 Type (S, SL, or G) the following classifications are used:

S - SWF (S) - sudden drop out and gradual recovery

Slow S - SWF (SL) - drop out takes 5 to 15 minutes and

gradual recovery

G - SWF (G) - Gradual disturbance fade irregular in either

the drop out or recovery stage

Column 12 Duration in Minutes

Column 13 Wide Spread Index. The degree of confidence in identifying the event by individual stations is combined into an index of certainty that the event is geographically wide spread, ranging from 1 (possible - single station reporting) to 5 (definite - many stations reporting).

SOLAR FLARE EFFECT (Columns 14 through 16)

Preliminary reports of solar flare effects, sometimes referred to as a magnetic crotchet, have been published in the Journal of Geophysical Research, Reference 5. The SFE's recorded in this catalogue are limited to those listed in reference 4. As a "distinctly" SFE or an "unmistakable" SFE (Classes A and B). The list of the reporting observatories is given in Reference 4.

Column 14 Beginning Time

Column 15 Number of Observatories Reporting the Effect

Column 16 Intensity. Strong effects, indicated by the letter "S", are marked by an asterisk in reference 4. Insofar as possible the SFE has been associated in time with a solar flare.

POLAR-CAP ABSORPTION (Columns 17 through 22)

Column 17 Onset Time. If reference 2 is listed in column 22 the starting time has been taken from that source.

Column 18 Rise Time in Hours from Reference 2

Column 19 Duration in Hours

Column 20 Absorption in db on the 30 Mc/s Riometer.

Column 21 Probable Flare - day/beg. If a polar-cap absorption-flare, association is given in the literature the reference is underlined in column 22

Column 22 The Sources Checked during the preparation of this catalogue have been listed.

GEOMAGNETIC STORMS (Columns 23 through 32)

The geomagnetic storms listed in this portion of the catalogue are limited to those with a maximum $K_{\rm p} > 5$. A few minor storms have been included if one or more investigators associated it with a major flare, or it was preceded by a PCA and/or followed by a Forbush decrease.

Column 23 Onset Time

Column 24 End Time

- Column 25 Type, the symbols g (gradual) and sc (sudden commencement) have been used. In a few cases both a g and an sc are indicated. In these cases, three or more magnetic observatories listed the storm with a sudden commencement.
- Column 26 Maximum Intensity the symbols m (moderate K_p as great a 5) ms (moderately severe $K_p = 6$ or 7) and s (severe $K_p = 8$ or 9) have been used.

Column 27 Maximum Kp

- Column 28 Number of Magnetic Observatories Reporting the Storm as an sc in reference 4 and/or 50.
- Column 29 K_{p} . This is the sum of the 8 three-hour Greenwich day $K_{p}^{}(s_{\bullet}$
- Column 30 Ap from reference 4.
- Column 31 Probable Flare day/beginning An entry in this column is based on one or more flare-storm correlations in one or more of the references listed in column 32.

Column 32 Sources of flare associations

FORBUSH DECREASE (Columns 33 through 37)

- Column 33 Onset Time. The day and hour is given if one is published in the literature, otherwise the date only is given.
- Column 34 Magnitude of the Decrease in Percent. A number of cosmic ray storms are listed in reference 33. The entries in this portion of the catalogue are limited to decreases of two percent or greater.
- Column 35 Duration in Hours, unless designated by the superscript d which indicates a duration in days.
- Column 36 Probable Flare (day/hour) An entry is given if a flare Forbush decrease association has been found in the literature.
- Column 37 Sources, the numbers refer to the references.

	Major]	FLARE					SHO	RTWAVE	E FADE		SOLAR	FLA
Date	Flare Serial No.	Event No.	Beg. UT	End UT	Max. UT	Posit	ion	Imp.	Onset	Imp	Туре	Dur. (Min.)	W.S. Index	Beg. UT	No. Rep
July 01															
02	31		<u>0705</u>	0805	-	N09	W 30	2+	0709	1	S	17	5		
03 04	32	92	0712 0830	0830 1145	0745 0840	N14 N10	W40 W42	3+ 3+	0729 0830	2+ 3	s s	61 44	5 5		
05	ı														
08 15	35			0802 re repor		N14	W41	2+	0536 2012	1+ 3-	s sL	24 138	5 5		
16 19			0731 1742	0845 2008	0744 1804	N31 S33	E 80 W29	1+ 2-	0721 1740	3 3	SL SL	59 105	5 5		
20			No flar 2358	e report <u>2500</u>	ed 2426	N29	E 18	2	1740 2407	3- 3	s sL	120 60	5 5	ļ	
21	36 37	103	0633 1320	0750 1442	0658 1337	N30 N29	E 15 E 12	2+ 3	0647 1335	3 2+	s s	60 4 5	5 5	1334	16
22 24	40	109	0607 1712	0727 1801	0625 1737 լ	N29 S 24	E 02 W27	2+ 3	0618 1727	3- 3	s -	42 113	5		
24 25 27 28			<u>1801</u>	2025	1828 J				1759	3-	S	81	5		
Aug. 01 02 03 04			0516 1432 1721 1612	0727 1448 1735 1639	0608 1436 1723	N34 N26 N26 S 27	W06 E32 E17 W48	2+ 2 1+ 1	1435 1720	2- 2	s s	15 40	5 5		
06 08	42		1116	1257	1134	N27	W57	2+	1119	2	SL	51	5		
09			0204 0617 1330	0237 0720 1442	0213 0629 1355	N26 S 09 S 33	W59 E 76 W77	1 2 1	0153 0615 1340	3 - 3 - 3	S SL SL	47 35 200	5 5 5		
10 13			No fla	re report	ed				0100	3	SL	60	5	0128	11
28	45 46	125 126	0913 2010	1404 2405	0955 2024	S 31 S 28	E 33 E30	3+ 3	0917 2020	3 2+	S S	138 18	5 5	2018	8
29	47 48	1	0545 1031	0715 1201	0555 1052	N24 S 25	E 35 E 20	2+ 3	0542 1039	3- 1+	s s	48 16	5 4	2010	·
30 31	49		0620 <u>0544</u>	0804 0616	0600 0551	N26 N13	E 22 E 03	2+ 2	0620 0544	2 3	s s	40 76	5 5		
	51 52	132	1257 1338	1557 1455	1312 1352	N25 N12	W02 W02	3+ 2+	1303	3+	S	184	5		
Sept. 01			0204	0224	0210	N13	w08	1+	0204	3	s	51	5		
02	53 55	135	0946 1045 1257	1030 1254 1346	0952 1049 1305	N12 S31 N10	W09 W36 W26	3 2+ 2	0950 1020	2 1+	s s	40 20	5 3		
03	56 57		1313 0647	1410 0841	1316	S 34 N14	W36 W39	3 3	1259	2-	G	68	5		
04	58	142	1412	1727	1429	N23	W30	3	1420	3	S	103	5		
06	59		<u>0751</u>	0900	0803	N23	w66	3	0800	2-	SL	60	5		
07 11 12	63 64	148 150	0810 0236 0703	0845 0722 0740	0823 0300 0713	N16 N13 N09	W90 W02 W15	2 3 3	0806 0244 0702	3 3 3-	S SL S	36 100 32	5 5 5	0810	27
13	65	152	1510 1410	1638 1505	1516 1422	N11 N09	W18 W32	3 2	1513 1416	2+ 3-	S S	39 34	5 5	1514	32
14			0223 0226	0321 0303	0231 0238	N08 N11	E 73 W39	2 2+	0228	3	a	35	E		
15 16	66		0333 1451	0418 1709	0336 1459	N07 N08	E 69 E 48	2 2+	0327 1458	3 1+	S S SL	83 22	5 5 5		
17 18	67 68		0416	0945 0720	0807 0633	N23 N23	E 28 E 13	2+ 2+	0411 0630	2+ 1+	s s	49 20	5 5	0630	10
	69	160	1026	1613	1325	N23	E 10	3	1030 1245	3 3-	G SL	104 95	5 5		10
19	70 71	161	1658 0350	2110 0555	1840 0410	N23 N23		3+ 3+	1730 0359	3+ 3	S SL	43 54	5 5		
20	72	,,,,	0744	1200	0800	N23	E 01	2+	0800	2	S	35	5	0803	9
20 21	74	165 168	2117 0405 1330	2222 0558 1510	2123 0422 1335	N07 N23 N10		2 2+ 3	2120 0410 1330	1+ 3 3-	S SL SL	21 32 60	5 5 5		
22		170	1248	1458	-	N08		2+	1252	3-	s	73	5		
23 25	1	1	0842	0916	0845	S 26	E45	1	0842	3_	S	34	1		

2.11-1

TABLE VI CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 195

		ECTS			TOL	Abs. db	BSORPTION					
·-	No. Obs. Reported	Int.	Onset	Rise Time (hrs.)		30 Mc S		References	Onset	End	Type	Ma Int.
			1500	16	86	4.1	20/1100/3	2 . <u>32 .34 .52 ,56</u>	Jan. 21, 0800 21, 1255	23: 00xx 24: 06xx	sc sc	s
42	13	-							29, 1313	30, 21xx	sc	nıs
									Feb. 04, 0003	06/16xx	sc	ms
14	13	-							04, 1100 12, 1850	05/23xx 14/09xx	sc ,g	ms
									13/0939 23/1807	14/04xx 24/14xx	sc sc	ms
									Mar. 01, 1614	04_06xx	sc ,g	s
									10, 0 023 10, 0 323	10, 21xx	sc -	nis
									15; 1938 16; 1600	16. 24xx	sc.g	ms ms
									26/1050 27/1136	30/09xx 30/09xx	sc sc	s s
									29/0336 29, 1315	30/05xx 30/09xx	sc sc	s s
			1330 0800	14 12	65 66	3.9 3.2	03, 0825, 3	2 . <u>34,56</u> 2				
13	29								Apr. 15/2048	16/06xx	sc	ms
:3	29	S							17/1136	20/06xx	sc	s
									18/1508 18/1538	20/06xx	sc ,g	ms nis
13	21 27											
0	24		0200		10	1	18/0810/1+ 18/1353/2	34,47,52 26,56	May			
									30, 0529	01 · 09xx	sc	ms
									June 03, 0457	07/03xx	g	ms
			2215 0500	44	105 115	- 5.0	1609/3 0236/2	52 2, <u>34,56</u>				
			1000	••	.13	0.0	0629/2	2, <u>34,56</u> <u>26,</u> 47,52	25, 0046	27/01xx	sc	ms
									30/0258	01/22xx	ъc	s

EOMAC	SNETIC STO	ORMS				1	F	ORBUSH	DECREASE	
Max. Kp	No. Final Rep Ref. 4 50	Σ Κ ₂	Ap	Probable Flare	References	Onset	Mag. Dec. 'n	Dur. Hrs.	Probable Flare	References
9- 9-	5 53	390 390	82 82	20, 1100, 3 20, 1100, 3	34, <u>52</u>	Jan. 21:1830	17	14h	20 1100	<u>32</u>
6-	53	27-	24							
6ი 6ი	16 5	33o 35+	31 39							
6+ 6+	43 35	23o 37-	15 43							
0+ 7υ	55	30o	32	21/1605/ ?	<u>52</u>					
8+	. 38	21 -	16	28/ 0005/ 3	<u>52</u>					
7- 7-	- 57	40- 10-	58 58							
60 60	17	18+ 34o	11 37							
8 - 8 -	18 33	20+ 36+	13 44							
8 - 8 -	60 54	440 250	77 21							
6-	43	22-	18							
8-	61	38 o	55	16/1040 3	<u>10.52</u>					
7-	36	350	42	17 1006 3	<u>10</u>					
7-	35	350	42							
5.	_	29÷	28							
6-	3	32+	33							
7 0	59	370	41	24 0838 3	34, <u>52</u>	June				
8+	54	55-	150	28 0658 3	10,16,23,28,52	28 xxxx	3	-	-	29

T	T				FLARE					SHOR	TWAVE	FADE		SOL
- 1	Maj, Flare Serial No.	Event No.	Beg. UT	End UT	Max. UT	Posit	ion	Imp.	Onset	Imp.	Туре	Dur. (Min.)	W.S. Index	Beg UT
Jan. 03 04 07 08 10	3		No flar 1324	0200 e reporte e reporte 1455 e reporte	ed 1 33 9	S 21 N17		1 3-	0135 1516 1725 1330 0102	3- 3- 3 2	SL SL S SL SL	125 91 120 70 98	5 5 5 5	
20 21	5	9	1100	1417	1119	S 30	W18	3	1113	1+	-	13	-	
24 25 27	8 9 10	12	0520	0342 1354 e report 0537 e report	0526	N16	W26 W31 W89	3 3	0240 1235 0320 0528 0742	2 2 3- 1 2+	s sL s s	(20) 35 60 20 44	5 5 4 1 5	01
29 31 Feb.	//11	17	0358	0550	0436	N24	E 05	3+	0356	1	G	84	1	
04 10 12			0819	0830	-	S 23	W72	2	0815	2	s	13	2	04
13 21 23 28 Mar	13	26	<u>1605</u> <u>0005</u>	2205 0420	1930 0014	N20 N18	W33 W35	?	0020	1+	G	110	4	
01 10 15 16 26														
27 29	15		1025	1400	1115	S 15	W40	3-	1024	3	s	131	2	
Apr. 02			0255 No flar	0515 e report		S16	W45	2	0250 1915	3	G SL	120 105	4 5	
03 06 08	17 18	40	0825 0616	1026 0830	0835 0622	S14 S19	w60 w02	3	0833	2	G SL	35 48	5 3	
11 12 15	19	50 54	1722 1850 1410 1040	1850 2010 1430 1300	1738 1916 -	S 23 S 25 N25 N30	E 04 W73 E 90 E 85	3 2+ 2 3	1731 1856 1354 1044	3 3+ 3	s s s	64 89 126 76	5 5 5 5	1
17	21	55	0338 1006 No fla	0400 <u>1118</u> re report	0344 1022 ted	S16 N29	E 80 E 76	2 3	0322 1004 1937	3 3 3+	G S SL	60 79 163	3 2 4	
18 19			0431	<u>0650</u>	0459	N28	E 47	2	0430	3	G	100	1	
May 05 14 14 16 18			No fla. 0222 1426 1228 0810 1353	re repor 0230 1441 1301 0939 1422	0225 1426 1246 0813 1401	S 20 S 12 S 10 S 11 S 25	E 87 E 33 E 07 W15 E 25	1 1 + 2 1 + 2	0145 0222 1435 1243 0808	3- 3 3 2- 2	s s s s	45 62 27 27 42	5 5 5 5	1 1
30 June 01			2329	2356	2344	S 25	W44	2-	2335	3	SL	77	5	
03	22		1040	1202	1047	S 18		3	1045	2+	S	20	5	
04 05 15 19	23 24 25	82	0027 0859 1326 0730 0609 1609	0155 0950 1433 0840 0811 1649	0054 0902 1329 0743 0640 1613	S 17 S 18 S 17 S 18 S 38 N 20	W27 W43 E 62 E 24	2 2 2 3- 3 2+	0030 0900 132£ 0735 0615 1608	3 3- 3- 2 2- 3	SL S S SL SL S	72 30 26 30 41 44	5 5 5 5 5	
22	27		0236 0629 0838	0257 0705 0929	- 0634 0850	N23 S 33 N22	W13	2 2 3	0229 0849	2 3-	s s	74 28	5 5	
25 28 30	28 29 30		0658 0814 0924	0950 0915 1332	0722 0828 1025	N10 S 28 N09	E 27 E 60 W03	3 3 2+	0708	2-	s	20	5	

TABLE VI 1957 (CONTINUED)

E EFI	FECTS			POL		ABSORPTION						
Obs. rted	Int.	Onset	Rise Time (hrs.)	Duration Hrs.	Abs. db 30 Me/S Riomete	Probable	References	Onset	End	Type	Max. Int.	Max Kp
								July 01/1747 02/0857	01/24xx 03/15xx	sc ,g	nıs s	7+ 80
		03/0845	_	48	6	0712/3+	22, <u>34,56</u>	03/0150	03/15xx	sc	ms	6-
		03/1000	12	52	9.2		2, <u>26,33</u> .45, <u>47,52</u>	04/2342 05/0042	- 05, 15xx	- sc	ms ms	7+ 7+
	-							22/0419	23/06xx	sc,g	ms	6-
		24/2015 25/0100	-	27 12	2 Mod	1712/3	22, <u>26,</u> 33,45, <u>47,52,56</u> 45					
		28/1500 28/2100		12	Weak		9 45					
								03, 1557 06, 0508	04, 03xx 06 24xx	sc sc	ms ms	6+ 6-
		09 1245 09 1500	-	24	2.5	-	64 24					
		09/1600 09/2000		50 69 24	3,1 m 2,5	0617, 2	2 45 36 34					
	_	09. 2245 28. 0400		24	2,5 Weak	0017, 2	<u>26,34</u> 45	13, 0617	13, 21xx	sc	ms	6-
	-	29, 0000 29, 1300		27 58	3.2	28/2010/2+ 29/1031-3	2. <u>34</u> .45, <u>56</u> .64 2,22, <u>26</u> , <u>32</u> ,33,34, <u>47</u> ,52, <u>56</u>	29, 1909 29, 1920	30. 21xx 30. 21xx	g sc	ms ms	7 - 7 -
		1415	12	46	4.9	1257 _/ 3	2,26,34,56	31, 1229 31, 1414 31 1812	01 15xx 01/15xx 01/15xx	se .g g se .g	ms ms ms	70 70 70
		1700	9	46	7.2	1045/2+ 1313/3	56 (2).26,(34).47,52	Sept. 02 0314	04, 06xx	se	s	9-
								03 1233	-	-	s	9-
								04, 1300	06, 06xx	sc	s	90
	s							06, 1120	07 09xx	sc.g	ms	6-
	s	0200 1200	-	33 18	m 1.5	12, 0703, 2	45 22, <u>26</u> ,32,33,34,52, <u>56</u>	12/2154 13, 0046	15:06xx 15:06xx	sc sc	s s	9 - 9 -
	_											
	-	1630	10	48	5	1330/3	34, <u>56</u>	21, 1005	22, 12xx	sc	ms	7+
		1700 1900	18	- 63	5,1		2 22,26,45,52	22 1344 23, 0235	23, 00xx 25, 15xx	sc sc,g	s s	9- 9-
							2.Ⅵ-2	-(2)				

GEOMAGN	ETIC ST	ORMS				T	FOR	BUSH DEC	REASE	
	Final p Ref.	F.V	An	Probable Flare	Defendance		Mag. Dec.	Duration	Droboble	
4	50	ΣКр	Ap	riare	References	Onset	%	Hrs.	Probable Flare	Reference
- 30 57	55	43o 32+	83 55	30/0924/2+	16,22,28,36	July 02/xxxx	3.2	3d		22
-	-	30 o	30		_ , ,	03/xxxx	0.5	Ju		33 50
				July						30
31 45	24	15- 38-	12 56	03/0712/3+ 03/0712/3+	10,16,28,34 22,23,29,52	05/xxxx	4	3d	03/0832	<u>29,33</u>
						19/xxxx	(2.5)	6d	16/1742	33
34	38	29+	2 6		36					
						27/xxxx	3	3	24/1712	<u>29,</u> 33
64 54	69 53	26- 330	27 31	01 0516/2+ 04/1612 1	22,23,36	Aug. 03/xxxx	8	11	Aug. 02/1432	<u>29,33</u>
٧.	00	330	31	04/1012 1	22, <u>23</u> ,36	06/xxxx	2	3	03/1721	33
_	_	33 o	33							
		•••	•••							
16 60	- 68	22- 22-	28 28	28/0913/3+	10,16,22,23.28,29,34,36, <u>52</u>	29/2110	12.5	13	28/0913 29/1030	<u>29,32,</u> 33
-	-	30-	36							
45	40	30- 30-	36 36	29 0545, 2+	34					
				29 1031 3	34	1				
62	70	49-	102	31 1357, 3+	10 16 22 22 28 20 24 26 52	Sept.				
	10	43-	102	Sept.	10.16,22,23,28,29,34,36,52	02/ xxxx	4.5	5d	31, 1357	<u>29</u> .33
-	-	54 0	135	02, 1313, 3	<u>23</u>					
60	72	470	145	02 1257/2 02 1313/3	10,22,34 28,29,52	04/xxxx	2.1	4 d	02/1313	33
39	40	340	36	03, 1412/3	16,23,36					
			.							
14 59	- 72	150 54,	7 160	11 0236 3 12 0236 3	10 16,22,23,28,29,36,52	13/0330	6.1	3	11/0236	29,32,33
				12, 1510-3	34			ŭ	- 27 0230	40,32,33
64	72	390	74	18 1658 3+	<u>16,22,23,28,29,36</u>	21/xxxx	6	- 1	8, 1658	29
	66 39	49o 58o	104 164	21/1330/3	<u>16</u>	22/xxxx	(6.6)	- 2	0/2117	33
									5	

					FLARE					SHOF	TWAVE	FADE		SOLAR	FLARE EF	FEC'
Date	Serial No.	Event No,	Beg. UT	End UT	Max. UT	Posit	ion	Imp.	Onset	Imp.	Type	Dur. (Min.)	W.S. Index	Beg. UT	No. Obs. Reported	Int
26	75	173	1907	2345	1952	N22	E 15	3	1925	2+	s	100	5			
29 30	76	176	1657	<u>1750</u>	1706	N25	W37	3	1700	3	s	40	5			
Oct. 08 10 13 14 16	78 79	180 181 182 185	1049 1630 0534	1135 1731 0641 0202	1100 1648 0539 0152	N42 N25 N12	W23 E 38 E 40 E 21	2 1+ 2+	1056 1607 0541	3 3 1	S SL S	30 123 25	1 5 1			
10	80	100	0413	0500	0425	S 26	E 20	3	0417	2	SL	30	5			
19	81		0603	0920	0639	S 24	W25	3	0620	1 +	SL	55	5			
20 21 22	82 83	190 194	No fla 0911 1637 1212	re report 1200 1804 <u>1314</u>	0939 1642 1218	S 25 S 26 S 25	W31 W45 W52	2+ 3+ 3	0149 0945 1639 1215	3 3 3+ 2	G S S S	121 15 156 35	1 4 5 5	1644	12	-
23 25	84		0621 0943 1855	0645 1132 1928	- 1900	S 27 N25 N26	W77 W44 W50	3 1+ 1	0620 0948 1833	2 3? 3-	S S SL	32 30 67	5 1 5			
Nov. 02 05	86 87	206	0904 1205	0955 1257	0918 1207	S 21 S 24	W16 W54	2+ 3	0914 1207	2- 2+	s s	26 14	5 5			
06	88	208	0834	0900	0841	S 28	W67	2+	0833	3-	s	29	5	0838	24	_
08 10 13 15 20 22 23	89 90 91	213 217 218	0606 0800 0517	re report 0735 0925 0636 re report 0446 0925	0623 - 0537	S 25 N19 N18 N31 N26	E 65 W18 W45 W28 W54	3 3 3 2+ 3	2328 0607 0834 0527 1000 0406 0757	3- 1 3? 1- 3 3- 2	S S S S S S	114 18 21 51 50 33 40	1 5 3 3 1 5 5	0407	6	-
24 25 26	93	219	0848	1202	0911	S14	E 37	3+	0901	3-	S	32	5			
29	94	224	0045	0600	0213	N41	E 63	3+								
Dec 01		226														
12 13 14 16	99 100 101	234	1750 No fla 1245 1125	1859 re repor 1450 1238	1806 ted - 1140	N15 N18 N17		2+ 3 3	1802 0156 1233 1129	1 3 3 1-	SL SL SL SL	28 49 67 33	5 5 5 5			
17 18 19	102 103 104	238	0734 0408 0605 0757	1004 0550 0712 1015	0737 0500 0624 0801	N20 N17 N17 N20	E 20 E 20	2+ 3 3 2+	0732 0500 0620 0757	2 + 1 + 2 3	SL G S S	58 15 30 23	5 4 5 5	0800	11	
20 21 25	105	242 257 258	No fla 2232 1605 1812	2400 1630 1900	ted 2251 1607 1822	N24 N30 S 07	E 06	3 1 1+	0757 2235 1628 1815	3 3+ 3 3	S SL S SL	57 65 39 47	1 1 5 5			
28 31		261	2229	2331	2230	N25	w50	2	2230	2 :	S	30	5			
		1	l						Į.					i		

2.27-3 0

1057 (CONTINUED)

Weak

Weak

Med.

0200

1600

2300

		T	ABL	EVI	1957 (CONTINUED)					
3			POLAF	CAP ABS	SORPTION						(
	Onset	Rise Time (hrs.)		Abs. db 30 Mc/S) Riometer		References	Onset	End	Туре	Max. Int.	Maz Kp
	26/2100 26/2315	-	24	Weak 2	1907/3	45 2,26,33, <u>34</u> ,47,52, <u>56</u>	29/0016	01/05 _{XX}	sc	sc	g
							Oct. 14/0440	15/01xx	sc,g	ms	6+
	1300 2100 0630	22	64 24	Weak 7.8 5	0911/2+ 20/1637/3+	26 2,45 22, <u>26,32,33,34,47,52,56</u>	21/2241	23/02xx	sc,g	ms	7-
	0030 0100 0200	10	46	Med. 2 6		45 24 2	Nov.				

45

45

45

31 0120 31 0514 31/1635 2.∇1-3

06/1821

Dec. 01_0336

19, 0938

07/12xx

28 15xx 28 15xx 28 15xx 28 15xx 28 15xx

02/15xx

21 10xx

02/15xx 02/15xx 02/15xx

sc .

g

se

sc

sc.g

g -

70

7-7-7-7ms ms ms

ms

ms

ms 6-

m 4-

ms 6-6-

ms

EO	MAGI	NETIC S	TORMS					FOR	BUSH DECF	EASE	
!		Final p Ref. 50	ΣΚρ	Ap	Probable Flare	References	Onset	Mag. Dec. %		Probable Flare	Reference
	61	73	52-	139	26/1907/3	10.16,22,23,28,29,34,36,52	26/xxxx 29/xxxx	8	_	26/1907	27 29,33
							,			20, 100.	<u>=0</u> ,50
	26	34	400	50							
	50	61	27+	28	20/1637/3+	10,16,22,23,29,34,36,52	Oct. 21/xxxx 22/0030	10 8.2	10 8	20/1637 20/1637	29,33 32
	63	71	19+	24	05/1205/3	<u>10,22.23,</u> 28,36					
	8	33	43- 43- 43- 43-	64 64 64 64	24/ 0848/3+	<u>10,16</u> .22, <u>23</u> .28. <u>52</u>	Nov. 25/xxxx 26/0200	6.8	20	24, 0848	50 32, <u>33</u>
	28	-	31-	29	29, 0045/3+	<u>16</u> ,22					
		-	270	20			Dec. 19/1700 20/xxxx	9.2	·	17, 0734	32. <u>33</u> 50
	11	-	41 + 41 + 41 +	53 53 53			31 _{/**} *****	2,6		28 (2229	33

TABLE VII. CATALOGUE OF BALLOON FLICHTS ASSOCIATED WITH MAJOR SOLAR FLARES DURING 1958

A search of the literature reveals only 2 balloon flights during the first six months of 1957. The balloon flight program increased with the start of the IGY in July 1957. A total of 140 flights were reported to the World Data Center A (cosmic rays) and listed in the Annals of the IGY (Ref. 51). 54 of these flights were made in the USSR by A.N. Charakchian or S. N. Vernon Institute of Nucleus Physics Moscow State University; or Dr. Yu. G. Shafer, of the Yakutsk Filial Academy of Sciences. 72 of the flights by scientists of the free world and 34 by the USSR scientists were made within four days after a major solar flare; a polar cap absorption, a spectral emission of Type II (slow drift) or Type IV (broad band continuum). A bibliography of papers published in the scientific literature discussing 1957 balloon flights is given on page 2.VII-iii, and when applicable, referenced on Table VII. A description of the column headings follow:

Column 1 Greenwich Date

Column 2 Flare Serial Number. This refers to the major flare serial number in Table I. Minor flares are those associated with Type II, or Type IV spectral emissions, or Polar-cap absorption, listed in Columns 5, 6, or 7.

Column 3 Beginning Time of the Flare

Column 4 Flare Importance

Column 5 Spectral Observations Type II Beginning Time

Column 6 Spectral Observations Type IV Beginning Time

Column 7 Polar-cap Absorption, Greenwich day/beginning UT

BALLOON DATA (Columns 8 through 17)

Column 8 Balloon Flight Serial Number

Column 9 Launch Date

Column 10 Time the Flight Reached Recording Altitude

Column 11 Time at Altitude, Hours, Minutes.

Column 12 Maximum Altitude. This is given in either kilometers or milibars as reported in reference 51.

Column 13 Name of the Place Where Balloon was launched.

Column 14 Geographical Latitude and Longitude.

Column 15 Instrument Carried. Where:

C = Single Geiger Counter

SC = Scintillations Counter

T = Double Coincidence Counter Telescope

EM = Emulsion Pack

I = Ionization Chamber

Column 16 Group. These have been designated as follows.

Bartol - Bartol Research Foundation, Dr. Martin A.

Pomerantz

MSU - Moscow State University

A. N. Charakchian, or S. N. Vernon

Minn. - School of Physics, University of Minnesota

Dr. J. R. Winckler

Yakutsk - Yakutsk Filial Academy of Sciences of USSR

Dr. Yu G. Shafer

Melbourne-Department of Physics, University of

Melbourne, Dr. V. D. Hopper

New York -Department of Physics, New York University

Dr. S. A. Korff

CIT - Norman Bridge Laboratory of Physics

California Institute of Technology

Dr. H. V. Neher

UC - Department of Physics, University of California,

Berkeley, Dr. Kinsey A. Anderson

Chicago - Ennco Fermi Institute, University of Chicago,

Dr. Peter Meyer, Dr. Gordon Lentz

SUI - Department of Physics State, University of

Iowa, Dr. J. A. van Allen, Dr. Carl McIlwain

Column 17

Published Balloon Flight Data. References that discuss the data obtained during some of the flights refer to the balloon flight bibliography, page 2.VII-iii. In many cases several of the flights are discussed in the reference. The number in Column 17 is not repeated for the later flights. In general, only large or outstanding changes in the radiation count are discussed.

REFERENCES FOR TABLE 2.VII BALLOON FLIGHTS DURING 1957

- 1. Aizu, H., Y. Fujimoto, S. Hasegama, M. Koshiba, I. Mito, J. Nishimura, and K. Yokoi, "Heavy Nuclei in the Primary Cosmic Radiation at Prince Albert Canada, I, Carbon, Nitrogen and Oxygen," Phys. Rev. 116 (1959) 436-444.
- Anderson, K. A., "Soft Radiation Events at High Altitude During the Magnetic Storm of August 29-30, 1957," Phys. Rev. <u>111</u> (1958a) 1397-1405.
- 3. Anderson, K. A., "Ionization Radiation Associated with Solar Radio Noise Storm," Phys. Rev. Ltrs. 1 (1958), 335-337.
- 4. Anderson, K. A., "Balloon Observations of X-rays in the Auroral Zone I," J. Geophys. Res. 65 (1960), 551-564.
- 5. Anderson, K. A., "Solar Cosmic Ray Events During Late August 1957," J. Geophys. Res. 69 (1964), 1743-1753.
- 6. Anderson, K. A., and D. C. Enemark, "Observations of Solar Cosmic Rays Near the North Magnetic Pole," J. Geophys. Res. 65 (1960), 2657-2671.
- 7. Danielson, R. F., "An Attempt to Detect Energetic Gamma Radiation from the Sun," J. Geophys. Res., 65 (1960), 2055-2059.
- 8. Erbe, H., Ph.D. Thesis, Max Planck Institut fur Aeronomie, Stuttgart (1959).
- 9. Freier, P. S., E. P. Ney, and C. J. Waddington, "Lithium, Beryllium, and Boron in Primary Cosmic Radiation, Phys. Rev. 113 (1959a), 921-927.
- 10. Freier, P. S., E. P. Ney, and C. J. Waddington, "Flux and Energy Spectrum of Cosmic-Ray Alpha Particles During Solar Maximum," Phys. Rev. 114 (1959b) 365-373.
- 11. Freier, P. S., E. P. Ney, and P. H. Fowler, "Primary Alpha Particles Intensities at Sunspot Maximum," Nature 181 (1958), 1319-1321.
- 12. Jain, P. L., E. Lohrmann, and M. W. Teucher, "Energy Spectrum of the Heavy Nuclei in the Cosmic Radiation Between 7- and 100- Bev/Nucleon, Phys. Rev. 115 (1959), 654-659.
- 13. Lohrmann, E., and M. W. Teucher, "Heavy Nuclei and & Particles Between 7 and 100 Bev/Nucleon I. Interaction Mean Free Paths and Fragmentation Probabilities," Phys. Rev. 115 (1959), 636-642.

- 14. McDonald, F. B., "Primary Cosmic Ray Proton and Alpha Flux Near the Geomagnetic Equator, "Phys. Rev. 109 (1958), 1367-1375.
- 15. McDonald, F. B., "Primary Cosmic-Ray Intensity Near Solar Maximum,"
 Phys. Rev. 116 (1959), 462-463.
- 16. McDonald, F. B., "Study of Primary Cosmic Ray Alpha and Proton Energy Spectra, Geomagnetic Cut-off Energies and Temporal Variations," Nuovo Cimento, Suppl. VIII Ser. X (1958), 500-507.
- 17. Meyer, P., "Primary Cosmic-Ray Proton and Alpha-Particle Intensities and Their Variation with Time," Phys. Rev. 115 (1959), 1734-1741.
- 18. Neher, H. V., and Hugh Anderson, "Cosmic Ray Changes from 1954 to 1957," Phys. Rev. 109 (1958), 608.
- 19. Neher, H. V., "Change of Cosmic Rays in Space," Nature 184 (1959), 423-425.
- 20. O'Brien, B. J., A. J. Hertz, and J. H. Noon, "The Charge Spectrum of Light Elements at 41° N Geomagnetic Latitude," Nuovo Cimento Suppl VIII Series X (1958), 524-531.
- 21. Pomerantz, M. A., S. P. Agarwal, and V. R. Potnis, "Balloon Flight Investigation of Primary Cosmic Rays During Solar Disturbances," J. Franklin Inst., 269 (1960), 235-244.
- 22. Pomerantz, M. A., S. P. Agarwal, and V. R. Potnis, "Direct Observations of Periodic Variation of Primary Cosmic-Ray Intensity," Phys. Rev. 109 (1958), 224-225.
- 23. Shafer, Yu G., "The Effect of Diminishing Solar Activity and Cosmic Ray Intensity from Measurements in the Stratosphere," Proc. (1959) Moscow, Cosmic Ray Conference 4 (1960), 71-77.
- 24. Singer, S. F., "The Primary Cosmic Radiation and Its Time Variation, Progress in Elementary Particles and Cosmic Ray Physics, North Holland Pub. Co. 4 (1958), 203-335.
- 25. Vernov, S. N., Tulinov, V. F., and A. N. Charakhchian, "The 27 Day Cosmic Ray Period in the Stratosphere," Soviet Physics, DOKLADY 3 (1958), 980-982.
- 26. Vernov, S. N., B. E. Samosudov, V. F. Tulinov, A. N. Charakhchyan, and T. N. Charakhchyan, "Studies of Intensity Variations of Cosmic Radiation in the Stratosphere," Proc. 1959 Moscow Cosmic Ray Conf. 4 (1960), 49-60.

- 27. Vernov, S. N., A. Y. Chudakov, P. V. Vakulov, and Y. I. Logachev, Soviet Physics, DOKLADY (1959).
- 28. Webber, W. R., "The Charge Composition and Energy Spectra of Primary Cosmic Rays and the Energy Balance Problem," Nuovo Cimento Supp. VIII, Series X (1958), 532-545.
- 29. Webber, W. R., Time Variations of Low Rigidity Cosmic Rays During the Recent Sunspot Cycle, Progress in Elementary Particles and Cosmic Ray Physics, North Holland Pub. Co. 6 (1962), 75-243.
- 30. Winckler, J. R., "Balloon Study of High-Altitude Radiations During the International Geophysical Year," J. Geophys. Res. 65 (1960), 1331-1359.
- 31. Winckler, J. R., and L. Peterson, "Large Auroral Effect on Cosmic Ray Detectors Observed at 8 gm/cm² Atmosphere Depth, Phys. Rev. 108 (1957b), 903-904.
- 32. Winckler, J. R., and L. Peterson, "A Large Cosmic Ray Decrease Accompanying the Solar Maximum of 1957," Nature 181 (1958a), 1317-1319.
- 33. Winckler, J. R., L. Peterson, R. Arnoldy, and R. Hoffman, "X-Rays from Visible Aurorae at Minneapolis," Phys. Rev. 110 (1958b), 1221-1231.

2.VII-1

TABLE VII BALLOON FLIGHTS ASSOCIATED WITH MAJOR SOLAR FLARES DURING 1957

					19, 1960)													
		Notes	McDonald (1958, 1959)	Winkler (1960)	Vernon, et. al. (1956, 1559, 1960) Winckler (1960)	Pomerantz (1960)	Pomerantz (1958)	Winkler (1960)	Mever (1989) Neher (1956, 1959) Winkler (1960)			Anderson (1958, 1964) Meyer (1959) Anderson (1964) Freter (1959 b)	Anderson (1960)		Alzu, et. al. (1959)	Winckler (1958 b) Meyer (1959)		
		Group	ins	Minnesota	MSU Minnesota MSU MSU	MSU MSU MSU MSU MSU MSU MSU MSU MSU MSU	Bartol	Minnesota	Chicago CIT Minnessita CIT CIT CIT	Chicago Bartol Bartol	Minnesota Bartol C Bartol MSU New York UC	Bartol UC Bartol Bartol Chicago UC Minnesota	Minnesota UC Bartol	Bartol Minnesota Minnesota UC UC	Minnesota Chicago Bartol Bartol	Minnesota Melbagne Chicago		
		Carried	T, CC	I. C, EM	0, t. EM	00000000	H	C, I, EM	SC, EM 1 C, I, EM 1 1 1, T, C	sc. t. c T T	C. I. EN T. T. C. T. C. C. BF3 C. BF3 T. C. I. T. C	T T T SC, T, C T, C	I, EM. PC I, T. C	T 1 EM 1 T, C 1 T, C T, C				
		Geographic Lat. Long.	*0X	N44.9 W93.3	N 55.9 E37.5 N 44.9 W 93.3 N 68.6 E33.3 N 68.6 E33.3	N68.6 E33.3 N55.9 E37.5 N55.9 E37.5 N68.6 E33.3 N68.6 E33.3 N55.9 W75.4 N56.6 E33.3		N44.9 W93.3	NS3.2 W105.7 NR5.3 W88.9 NR5.3 W88.9 NP6.5 W88.9 NP6.5 W88.9 NR8.7 W33.9 NR8.7 W33.9	N53.2 W105.7 N39.9 W75.4 N39.9 W75.4	N44.9 W93.3 N58.7 W93.8 N58.7 W93.8 N69 E731.1 N32 W99 N58.7 W93.3 N58.7 W93.3 N58.7 W93.3	N39.9 W75.4 N39.9 W75.4 N39.9 W75.4 N39.9 W15.4 N53.2 W105.7 N58.7 W93.8 N45.1 W93.2	N44.9 W93.3 N58.7 W93.8 N39.9 W75.4	N38.9 W75.4 N44.9 W93.3 N44.9 W93.8 N58.7 W93.8 N58.7 W93.8		N44.9 W93.3 S31.1 E136.8 N53.2 W105.7		
LOCATION		Place	Guain	Minneapolis, Minn.	Dolgoprudnaya, USSR Minnespolis, Minn. Loparskaya, USSR Loparskaya, USSR	Liparikaya, USSR Didoptudanya, USSR Didoptudanya, USSR Didoptudanya, USSR Swarthmere, Pa. Swarthmere, Pa. Loparikaya, USSR	Swarthmore, Pa.	Minneapolis, Minn.	Pernce Albert, Canda Thule Greenland Mancapolas, Mun, Thule, Greenland Thule, Greenland F. Curchill, Canda Thule, Greenland	Prince Albert, Cutada Swarthmore, Pa. Swarthmore, Pa.	Minnespoils. Minn. Swarthmore. Pa. Fr. Churchill. Canda Swarthmore. Pa. Murmans. USR Brownword. Texas. Minnespoils. Minn. Fr. Churchill. Canda Fr. Churchill. Canda	Swarthmore, Pa. Fr. Churchill, Canada Swarthmore, Pa. Swarthmore, Pa. Prince Albert, Canada Fr. Churchill, Canada	Minnecpolis, Minn. Fr. Churchill, Canada Swarthmore, Pa.	Swarthmert - Pa. Muneapolls, Minn. St. St. Patl, Mun. Ft. Churchill, Canada Ft. Churchill, Canada Ft. Churchill, Canada	Minocapelis, Mino. Peroce Albert, Canada Swarfmore, Pa.	Minne-apolis, Minn. Weemera, Australia Prince Allwert, Canada		
T	1	Alntudr Km mo	-	-	01			10	100	,	01 01	12 10	01 00	10 10 10	10 10 29	9 1		
				40 30	31 31 40 26 26 24 28	111 25 338 29 50 27 08 27 15 23 36 28 22 16	62 00	0	- 46 -	11 – 00 27 30	40 00 00 25 30 30 30 30	00 26 20 32 30 23 007 33	50	23 00 00 00 00 00 00 00 00 00 00 00 00 00		8888		
215	Time at	Altıtude Hr. Min.		21 4	4040 8400	733010		-	7 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	eo 4+ ∪	01 00 40 00 to 00 00 00	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	227	00047F	بەر ھە دى د	04+0		
BALLOON FLIGHTS		F		0220	1029 0416 0830 0220	0557 0605 1210 0605 0605 0942 1200	0231	0217	1345 1450 0150 1428 1448 1050 1351	1414 1506 1546	0315 0400 -132 1151 1205 0736 1120 1120	0341 1130 1203 1632 1306 0212 2530	0126 0606 1104	1104 1559 1306 1055 1121	1829	0207		
BAIL	Launch	Gr. Dav. t	Feb.	June 06 July	004	80 2	23	28	Aug. 09 10 11 12	23	24 25 27 27	29 30 31	Sept. 01	90 00 00 00	9 = 1	22 23 23		
	Flight	Serial No.		61	т п ф п	7 9 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15	16	11.1 18.2 20.2 23.2	24 25 26	2 3 3 3 3 3 5 6 8 8 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 4 C	4 t & & & & & & & & & & & & & & & & & &		n 3 (- 30		
1.34	5	Beg. UT	1042	·	1000							0000 0000 1300 1500	07.1			1200	1804	
1, 42	TRAL	Type IV Beg, UT			0832		1321	-				0920		1310	0244	1515		
0.100	SPECTRAL	Type II Beg, UT	0407									2021.9				0712 1516		
	+	Imp	÷	en	e e	. 2		-2	2-	е с	2			r			4446	
	FLARE	å5.	0358	1040	0705 0712 1134 1154	0521	0633 1320 0953 1240	05.37	7111	0745	4	0913 2010 0545 1031 0620 0521	1338 1225 1045	1313 0647 1412 0751	0755 0223 0702 0236	1510	1451 06.24 1025	1900
		Skried N	g	ä	32 33	, en	2583	7	6	£ ;	ţ	3 + + + 4 + 4 + 0 0 0 0 0 0 0 0 0 0 0 0 0	52 52 53	88 88	95 12 13 13 13	75	35831	O,
		. Sirg	te	June 93	5 F 5	.8	21	55	98	23	77	28 29 30	Sept. 01	8 8	01 11	2	18	

As in the previous tables, minor flares, small sunspot groups, plages, and the other solar and solar-terrestrial effects associated with any of the major entries are included if an observation is available.

Descriptions or critical comments about many of the events listed in this catalogue are given as footnotes on the appropriate pages.

A major entry, i.e., one qualifying under 1 through 6 above is indicated by an asterisk in the appropriate column. The column headings and explanations, where necessary, are given below:

- Column 1 Event number, starting with one at the beginning of each year.
- Column 2 Greenwich date of the event.

FLARE DATA (Columns 3 through 8)

These will include all 3 and 3+ flares (reference 9) as well as minor flares, and in some cases - sub-flares that may be associated with a solar or terrestrial event given in subsequent columns of the table:

- Column 3 Beginning of the flare UT. If the start of the flare was observed, the beginning time is underlined.
- Column 4 End time UT. If the end of the flare was observed, the time is underlined.
- Column 5 Time of maximum, UT.
- Column 6 Importance This is the value assigned to the flare in the McMath-Hulbert working list of flares (reference 9).
- Column 7 The heliographic position is the arithmetic mean of positions reported in the IAU Bulletin and given in reference 9.
- Column 8 Number of observations.

SHORT WAVE RADIO FADEOUTS (Columns 9 through 14)

Sudden ionosphere disturbances may be detected in a number of ways: short wave fadeouts (SWF), enhancement of low frequency atmospherics (SEA), increase in cosmic absorption (SCNA), sudden phase anomalies at VLF (SPA), and sudden signal enhancements at VLF (SES).

The data included in this catalogue are limited to SWF's and includes all outstanding short wave radio fadeouts of importance 3 or 3+ that lasted for 30 minutes or more. In addition minor SWF's that occurred at the time of the flares catalogued in Columns 3 through 8 are included. The following data are given.

TABLE VIII. CHRONOLOGICAL CATALOGUE OF MAJOR SOLAR EVENTS DURING 1957

This table was prepared for publication by Dr. Prince and Miss Hedeman at the Mc-Math-Hulbert Solar Observatory. The entries include the following:

- 1. All major flares that are listed in the McMath-Hulbert working list of solar flares with importance 3 and 3+.
- 2. All great short wave fades of importance 3 or 3+ that last for 30 minutes or more.
- 3. All great 10 cm bursts with a peak flux equal to or greater than 500 units $(10^{-22} \text{ Wm}^{-2} (\text{c/s})^{-1})$.
- 4. The most active plages. (Produced 30 or more flares during disk passage.)
- 5. The greatest sunspots (area ≥ 1000 millionth in the Mt. Wilson list).
- 6. All spectral radio emission of Type II and Type IV. In addition, outstanding bursts of Type I and Type III have been included.
 - 7. Radio emissions at 200 Mc/s at the time of major events.
 - 8. Radio emissions at other frequencies.
 - 9. Polar-cap absorptions.
 - 10. Geomagnetic storms.

The entries in this section of the catalogue will bring together in chronological order many of the entries already given in Tables I through VI. The exceptions are defined below:

- (a) The major solar flare requirement for Table I is based on the list of flares reported in the IAU Quarterly Bulletin and includes some of importance 2+ and all flares of importance 3 and 3+. In Table VIII only flares of importance 3 and 3+ listed in the McMath-Hulbert Observatory working list of flares are included.
- (b) The Table VIII requirement for "the greatest" sunspots is based on the Mt. Wilson list and only those with an area greater than a 1000 millionth qualify. On the other hand, Table II includes all sunspot groups from the Royal Greenwich Observatory list with a maximum area, during disk passage, equal to or greater than 500 millionth, and all groups with γ , and $\beta\gamma$, Mt. Wilson magnetic classification.

- Column 9

 Type (S, SL, or G). The following classifications are used:

 S-SWF (S): sudden dropout and gradual recovery

 Slow S SWF (SL): dropout takes 5 to 15 minutes and gradual recovery

 G-SWF (G): Gradual disturbance: fade irregular in either the dropout or recovery stage.
- Column 10 Importance: SWF's are given an importance rating on a scale from 1- to 3+ based on amplitude of the fade, duration of the event, and confidence in the reality of the event.
- Column 11 Beginning time UT.
- Column 12 Duration in Minutes.
- Column 13 Widespread Index. The degree of confidence in identifying the event by the individual stations is combined into an index of certainty that the event is geographically widespread, ranging from 1 (possible single station) to 5 (definite many stations).
- Column 14 Number of Observations: The column gives the number of observatories reporting the event.

SOLAR RADIO EMISSIONS AT 10 cm (Columns 15 through 19)

- Column 15

 Type: Two different classifications are used: (1)
 numerical, on a scale from 1 to 9, used in reference 52
 and defined in "Descriptions Test and Index for CRPL-F,
 Part B. Solar-Geophysical Data," issued November 1962.
 (2) Alphabetical symbols used in reference 63. These
 are defined in the introduction of Table IV and illustrated
 on page 2.IV-iv.
- Column 16 Beginning Time UT.
- Column 17 Duration in Minutes.
- Column 18 Time of Maximum Flux, UT.
- Column 19 Peak Flux.

PLAGE DATA (Columns 20 through 28)

The data in this section of Table VIII are taken from the McMath-Hulbert Plage Catalogues. The entries in this table are limited to: plage regions that were the source of 30 or more flares during disk passage, indicated in Column 20 with an asterisk, and/or plage regions associated with flares tabulated in Columns 3 through 8. The column headings, in general, self-explanatory, follow:

- Column 20 McMath-Hulbert Plage Number.
- Column 21 Greenwich Day of Central Meridian Passage.
- Column 22 Mean Longitude.
- Column 23 Mean Latitude.
- Column 24

 Average Intensity The intensity of calcium plages are estimated on a scale from 1 (faint) to 5 (very bright). The values given in this column are the average intensity during disk passage.
- Column 25 Maximum Area In units of millionth of the area of the solar hemisphere.
- Column 26 Number of Flares This is the total of all flares associated with the plage during disk passage.
- Column 27 Age in Rotations The number 1 indicates that the plage is new.
- Column 28 Identification This is the number of the plage region during the previous rotation. If two or more numbers are given in this column, those plages or parts of them combined to form the tabulated plage.

SUNSPOT DATA (Columns 29 through 35)

This portion of the catalogue is limited to the sunspots in the plage region given in column 20.

- Column 29 Mt. Wilson Magnetic Classification from reference 67.
- Column 30 Greenwich Day of Central Meridian Passage.
- Column 31 Mean Latitude During Disk Passage.
- Column 32 Mean Magnetic Field Strength H, in units of 100 gauss from reference 67.
- Column 33 When seen: The first number gives the data the sunspot was first seen; the second number is the last date on which the spot was seen.
- Column 34 Area (Mt. Wilson).
- Column 35 Mt. Wilson Sunspot Numbers, of all spots located in the plage of Column 20.

- Column 50 Beginning time UT.
- Column 51 Duration in minutes.
- Column 52 Time of peak flux.
- Column 53 Peak flux.
- Column 54 Observatory.

POLAR-CAP ABSORPTION DATA (Columns 55 through 60)

- Column 55 Greenwich Day.
- Column 56 Onset Time.
- Column 57 Time to rise to peak.
- Column 58 Duration in hours.
- Column 59 Intensity.
- Column 60 Observer.
 - B Bailey
 - H Hakura and Goh
 - K Kiruna
 - L Leinbach

GEOMAGNETIC STORMS (Columns 61 through 62)

- Column 61 Greenwich Day.
- Column 62 Beginning of the Storm.
- Column 63 Duration of the Storm (h) indicates hours, (d) indicates days.
- Column 64 Type
 - g gradual
 - sc- sudden commencement

Column 65 Intensity

- m moderate
- ms- moderately severe
- s severe
- 2.VIII-vi

DYNAMIC SPECTRUM DATA (Columns 36 through 41)

Column 36 Type I Bursts. The following information is given:

amount of activity indicated by the Symbols Is, b,

G, g, or s; duration of the burst - beginning time,
end time; and the intensity on a scale from 1 (weak)
to 3 (strong). The activity symbols are defined as
follows:

At 100 Mc/s intensity 1 corresponds to 5 to 40 x 10^{-22} Wm⁻² (c/s)⁻¹, 2 = 40 to 200 x 10^{-22} Wm⁻² (c/s)⁻¹ and $3 \ge 200$ x 10^{-22} Wm⁻² (c/s)⁻¹

Is - A noise storm

C - A noise storm with a slowly varying enhancement over a broad spectrum

b - Single bursts

g - Small group (< 10) of bursts

G - Large group (≥10) of bursts

s - Storm intermittent but apparently connected activity.

Column 37 Type III bursts, activity, duration and intensity.

Column 38 Type II (slow drift) bursts, duration, and intensity.

Column 39 Type IV (broad band continuum) duration and intensity.

Column 40 Observatory

Column 41 Frequency Range

200 Mc/s DATA (Columns 42 through 47)

Column 42 Type alphabetical symbols.

Column 43 Beginning time UT.

Column 44 Duration in minutes.

Column 45 Time of maximum flux.

Column 46 Peak flux.

Column 47 Observatory.

OTHER RADIO DATA (Columns 48 through 54)

Column 48 Frequency Mc/s

Column 49 Type

_	Type I	DYNAMI	C SPECTRUM	I DATA			}		200 MC	S DATA			1		OTH	ER RADIO
vent No.	Time/Max. Int.	Type III Time/Int.	Time II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. (UT)	Dur. (Min)	Max. (UT)	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg. (UT)	Dur. (Min)
1																
2 3							CD	0054	5	0055	>>120	тк	9400	CD	0054	15
4							CA	0100	120	0110	>120	TK	169	CD	1016	9
							_						81 81	M CD	1020 1050	13 13
5	I in progress all day	g1706/3 g1719/2	*1703- 1712/3+	* 1711- 2000/3	H	580- 100	CD	1703 1711	8 156	-	>159 >159	c c	460 167	6 6	1703 1706	181 110
6 7	C1737-	g1739/3	*1734-		н	580-		1004				_				
	1741/2 I 1741- S 1810/1	g1740/1 g1741/2	1738/3+			100	CD	1734 1738	4 57		off-scale -	C	460 167	CD	1733 1734	83 92
8																
9													536 81	E E	1057 1056	93
10																
12							CD	1242	1.5		130	N	536	CD	1229	58
13							SID	1251	0.5		200	N				
14		G2318/2	*2328- 2331/3		<u>H</u> ,s	145- 100							167	CD	2317	2.4
15			*2348- 2354/3		н, <u>s</u>	135- 100							9400	SD	2335	2.5
16			200 1/10			100										
17		G0358- 0403/3	*0407 0424/3		s											
18																
19	I in progress all day	G1552- 1554/2	*1551- 1555/3+		н	580- 100	CD	1552 1604	7 108		>74	c c	460 169	CD	1551 1551	3 4
20		g1540/1	*1546- 1553/3		Н	165- 100	CD	1538.5	2			С	167 167	SID SID	1539 1546	2,2 1,9
21																
22																
24	I 2003 - ⁸ 2042/2	G1606/2 g1631/2	*2008 2011/2		н	155- 100	SD E	1630 1630	0.5 >270		>80	N C	167 167	CD E	1636 1827	3.5 257
25	, -	g-501/ 2	2012/ 2			200		2000	72.0			C	1	-	1021	201
26	I 0002- S0014/2 I 0032- S0148/1	G0012- 0014/2	*0017- 0020/3+		<u>н</u> ,s s	140- 100	CD	0011	40	0030	240	тк	600 460 167	CD CD	0001 0001 0001	101 33 29
27			*0036-		s											
28			0047/3													
29							1									
30													1			

observed over the frequency range 145 - 100 Mc. No observations exist at meter wavelengths at the time of the

observations east.

Type II burst.

15. No known flare, SWF, or 10 cm. bursts are reported at the time of the Type II burst on Jan. 24th at 2348 UT., therefore plage and spot data for this event are not available. The Type II burst covers a frequency range of 135 - 100 Mc, and was observed by both Ft. Davis and Sydney. No observations exist at meter wavelengths. Events No. 14 and No. 15 are so closely related in time, and are so similar, that they undoubtedly are related to each other.

which is deciming...

a return of the region which was described in events Nos. 2, 3, 5, 6, and 7. No distinctive events are reported at any of the single radio frequencies at the time of the flare.

Three of the 10 stations start this storm later, with a sudden commencement, Feb. 4th at 00xx UT. Five stations start the storm even later-gradually-on 4th at 11xxUT. The 3-hr. Kp's indicate a rise in geomagnetic activity on Feb. 3rd.

16. This storm is difficult to explain. Except for the events on Jan. 24th, it is not preceded by any major solar activity. It 19. The Type II burst on Feb. 8th at 1551 UT. was observed by

the storm of Jan. 2nd (Event No. 1).

This great flare on Jan. 31st a USBO UT. occurs in a region which is declining in brightness and in activity. The plage is a return of the region which was described in event No. 2 and which was associated with events Nos. 2, 3, 5, 6, and 7. No distinctive events are reported at any of the single radio frequencies at the time of the flare.

580 - 100 Mc. Inverted U bursts were also reported at 1552 UT. At meter wavelengths, the radio event consists of a major burst and a long second part which is made up of bursts and a rise in base level.

No known SWF is reported at the time of the Type II burst on Feb. 12th at 1546 UT. The related optical event is only a minor flare near the limb. The Type II burst occurred over the frequency range 165 - 100 Mc, and was preceded by an inverted U burst at 1540 UT. Only minor bursts are reported at the single radio frequencies at the time of the Type II

21. Four of the 15 stations that report this storm indicate a second SC on 13th at 0939 UT.

2. VII - 1R

2. **VIII** - 1R

			PL	AGE DA	TA						SUNSPO	T DAT	Α		
McM. lage No.	CMP Gr. Day		Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat,	н	When Seen	Area	MT.W. No.
*3899	Mar, 26.5	262"	S15	3.5	8,500	31	1	NEW	lBpl	Mar. 26.3	S14	34	19-1		12216
3907 3908	30.5 26.5	209	S 18	3	5,200	25	6	3872	dBl 101	29.7	S16	14	28-4		12235
	20.3	262	N28	3	1,800	7	1	NEW	dβl dβl d≈pl	25.9 26.6 26.7	N27 N27 N30	10 5 9	25-31 27-1 31-1		12225 12231 12239
3907															
3907															
*3923	Apr. 12.5	38	S 23	3.5	6,000	41	2	3888	l∝pl dβ	Apr. 12.1 12.1	S 20 S 23	33 14	5-15 6-15		12254 12258
3918	3.5	157"	N14	3	3,000	2	1	NEW	d×L	3.9	N15	(10)	6-9		12255
*3923															
3916	07,5	104	S 24	3	5,500	24	3,5	3881 and Part of	dBL lBpd	07.3 8.0	S 26 S 20	12 14	7-13 1-12		12259 12241
*3941	23.0	259"	N28	3	9,000	36	2	3884 3900 and 3908	*lßyd	22.9	N28	(20)	19-27		12285
*3941															
*3941									!						
3944	22.5	266"	S16	3	7,500	23	2	3899	apl	22.1	S12	22	19-28		12283
*3941									d ∕ ∂f£	22.9	912	15	24-28		12292

6 UT, is associated with est limb of the sun. The flare is reported as in vering. In the dynamic III bursts are reported al unclassified activity r wavelengths, the radio uperposed on an unusual e reported at any other of the SWF at 1915 UT.

regence of activity since etrum observations are 0250 UT. The plage and spot data for this event are the same as that given for event No. 38. No dynamic spectrum observations are available at the time of the major flare on April 3rd at The piage and spot data or this event are the same as that given for event No. 38. No dynamic spectrum observations are available at the time of the major flure on April 3rd at 0825 UT. There are no outstanding events at centimeter or meter wavelengths from which Type IV radio emission might easily be inferred (except possibly at 9460 Me). This major flare was followed by PCA (event No. 4D within a period of 5 hours.

the time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in spot data for this event are not available. No known SWF is reported, and no 10 cm. observations were being made, at the time of the Type Il burst. No distinctive event is reported at meter wavelengths, although a major burst at 169 Mc.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

SWF, the time of the SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF.

evidently occurred 10 minutes earlier than the start of the

- This event does not fulfill any of the criteria for inclusion in this catalogue as a "major" solar event. It is given here, however, as a possible predecessor of the next PCA event (No. 46). The plage and spot data are the same as that given for event No. 38. No dynamic spectrum observations exist at the time of the SWF on April 15that 1408 UT. The associated flare data is incomplete, but is related to activity observed in progress in an active region at the west limb, (See note No. 38.) No distinctive event is reported at meter wavelengths at the time of the SWF.

- Column 66 Number of stations reporting the storm.
- Column 67 Maximum Ko during the storm.

TABLE VIII CHRONOLOGICAL CATALOGUE

				FLARE	DATA				SHO	ORT-V	VAVE RA	ADIO FA	DEGUTS				0 СМ. Е	ENTS	
Event	Gr.	Beg.	End	Max.	Imp	Pos	ition	No. of	Туре						Туре	Beg.			Dook
No.	Day	(UT)	(UT)	(UT)	-			Obs.	1		(UT)	(Min)	Wide Spread Index	Obs.	.,,,,	(UT)	Dur. (Min)	Max. (UT)	Peak Flux
1	Jan. 02								}										
2	02								ł										
3	05	0116	0200	0116	2	N17	W31	1(1c)	SL	2+	0050	63	5	2	*CD	0050	58	0056	501
4	06	*1038	1404	1128	3	S 21	E40	6(3c)											
5	06	1822			1-	N16	W53	1(1c)	*s	3	1702	53	5	9	*2	1701.	5 10	1703.5	700
6	06	1822			1-	N16	W53	1(1c)	G	1	1802	63	-	Mc	*2	1758	92	1827	585
7	07	1830	1840		2+	N20	W65	1(1c)	*s	3	1725	120	5	8	3 6 1 1	1729 1729.3 1745.5 1752	180 3 15 5 3 1.5	1910 1737.5 1746.5 1752.5	17
8	08														l				
9	20	*1100	1417	1119	3	S 30	W18	5(1c)	s	1+	1113	13	-	-	-	1100	24	-	184
10	20								1										
11	21																		
12	24	*1225	1354	1241	3	N16	W31	4(3c)	SL	2	1235	35	5	6	-	1233	12	-	250
13	24	1638	1653		2	S 27	W80	2(2c)	S	2+	1638	27	5	4	*2 4	1637 1647	10 120	1638.8	1000 25
14	24																		
15	28																		
16	29																		
17	31	•0358	0550	0436	3+	N24	E05	1(1e)	G	1	0356	84	1	1	CD	0359	>120	0435	234
18	Feb. 03														ĺ				
19	08	1550	1615	1555	2	S 28	E38	2(2c)	s	2	1552	10	5	6	* 2	1550	6	1551	865
20	12	1542	1620		1-	N19	E80		ŀ						1	1556 1540	5 2	1540.5	6
21	12																		
22	18																		
23	21																		
24	21	*1605	2205	1930	3+	N20	w33	1(1c)							3	1750	240	1915	19
25	23																		
26	28	*0005	0420	0014	3	N18	W 35	2	G	1+	0020	110	4	2	CD	0000	>50	0045	224
Ì																			
27	Mar. 01								G	1-	0040	70	1	1	CD	0038	> 9	0044	220
28	01																		,
29	10																		
30	15													!					
31	21																		

 This large, bright and active plage (3808) is responsible for 5 major events in this catalogue, none of which are accompanied by any known PCA events, or are followed by any major magnetic disturbances.

3. The plage and spot data for this event are the same as that given for event No. 2. No dynamic spectrum observations exist at the time of the large 10 cm. burst on Jan. 5th at 0050 UT. A major burst with a very long-enduring second part is reported at meter wavelengths.

4. No known SWF or 10 cm. events are reported at the time of the large flare on Jan. 6th at 1038 UT. The plage is extremely large, and very bright, and contains numerous other small spots in addition to the three spots which are listed in the spot data. The β p spot No. 12068 is a return of the β f spot

No. 12016 in Region 3788. No dynamic spectrum observations exist at the time of the flare. No distinctive event is reported at meter wavelengths (200 Mc) and only modest bursts are reported at the very low frequencies.

5. This is a very great solar event, for which we have very incomplete information with respect to the optical flare. The strong Type II and Type IV bursts reported by Ft. Davis on Jan. 6th at 1703 UT. cover the entire observable range of frequencies from \$50 - 100 Mc. These events are superposed on a background of a moderate noise storm which is in progress throughout the day. At meter wavelengths the radio event consists of a major burst followed by a large rise in base level which continues for more than two and one-half hours.

6. This large 10 cm. burst on Jar perhaps be coupled with event N taken together seem to be relat sun. The strong Type IV radio er part" of the 200 Mc burst, and tu frequencies, related to event No the start of the 10 cm. burst.

This major SWF on Jan. 7th at 17
great Type II burst which covers
of 580 - 100 Mc observable by
which was undoubtedly related t
progress about one hour later,
still in progress. At meter wav
slists of a major (off-scale) bur
base level. Note that the 10 cm

F MAJOR SOLAR EVENTS FOR 1957

McM	CMP		PL.								SUNSPO		Α		
Plage No.	Gr. Day	Mean Long.	Mean Lat.	Aver. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat.	н	When Seen	Area	MT.W.
3808	Jan. 02.5	275°	N20	3.5	E 000	00			• IBYL	Jan.					
3808	02.0	275	1120	3.3	5,000	28	1	NEW	* 2012	03.0	N18	35	27-8		12054
3813	09.5	183°	S 22	3.5	19,000	27	3	3788	lbo Bl lbpl	08.1	S15	15	1-9		12066
3808									Top1	09.3 09.4	S 16 S 23	15 13	6-15 2-14		12075 12068
3808															
3808															
*3820	19.0	58°	S 28	3	9,000	36	2	3794 and	0 0	10.0	0.00	••			
					-,	•	•	3797	lapl	18.8	527	29	14-25		12085
*3823	23.0	5°	N20	3.5	16,000	37	3	3801	lapl Lpl	22.1 22.7	N17 N11	34 (20)	15-25 16-25		12089 12093
*3820															
3830	30	273°	N20	3	8,500	6	2	3808							
	••			•	0,300	Ü	2	3606	dapl	31.0 31.1	N16 N16	10 10	31-5 31-5		12114 12113
3844	Feb. 10.5	122°	S 26	3.5	7,000	9	1	NEW	000	Feb.	0.00				
3856	19.0	10°	N15	2.5	2,800	4	4	Part of	lßpl Ißpl	10.9	S 26	35	4-16		12124
					2,000	1	•	3823	арас	19.1	N09	20	19-25		12140
3856															
								ŀ							
3863	25.0	291°	N18	3	3,500	4	3	3830	dBpd	25.3	N14	27	22-27		12154
	r														
								i							
					•										
6th at 1758	UT., should		ery lon	g-endurin	g rise and	l fall in f	lux.		12. No dynamic	snectrum ch	onvetie	e ortet	ot the *		

2, are all in progress at UT, is accompanied by a

UT, is accompanied by a e entire frequency range t. Davis. A major flare, is event, was observed in while the large SWF was gits the radio event con-ollowed by a large rise in sts are superposed on a

- This very severe storm is one of the rather rare storms for which the 3-hour Kp value reaches a value of 9. Only 37 such storms have been reported in the interval 1932-1961.
 No flare observations were being made at the time of the Type II burst on Jan. 24th at 2328 UT., therefore plage and spot data for this event are not available. No known SWF or
- No. 12089 is a return of the spot No. 12040 in region 3801.
- No dynamic spectrum observations, and no observations at meter wavelengths exist at the time of the major flare on Jan. 20th at 1100 UT. The αp spot No. 12085 is a return of the βf spot No. 12048 in region 3794. In addition to this spot, five other small spots of an ephemeral nature are also present in the plage.
 The plage and spot data for this event are the same as that given for event No. 9. The large 10 cm. event on Jan. 24th at 1637 UT. consists of a large burst followed by a long post-burst increase. No dynamic spectrum events, and no distinctive events at any of the other single radio frequencies, are reported at the time of the 10 cm. burst.

			FL.	ARE DA	TA				SHO	ORT-W	AVE RA	DIO F	ADEOU1	rs		10	CM. EV	ENTS	
Event	Gr.	Beg. End	Max.	Im	р.	Positi	on	No. of	Type	Imp.	Beg.	Dur.	Wide Spread	No. of	Type	Beg.	Dur.	Max.	Peak
No.	Day	UT UT						Obs.			UT	Min.	Index	Obs.		UT	Min.	UT	Flux
32	Mar. 25																		
33	26																		
33	20														 				
34	26																		
35															ŀ				
36	29								ŀ						1				
37	31																		
38	Apr. 02	0255	0444		2	S16	W46	3/1c	*G	3	0250	120	4	6	*CD	0301	60	0336	800
39	02	1959	2120		1	N25	W90	1/10	*SL	. 3	1915	10	5 5	10	2 2	1914 1955	38 23	1923 1959	247 176
															4	2018	35	2000	14
40	03	*0825	1026	0835	3	S14	wen	2	G	2	0833	35	i 5	7	CD	0827	65	_	_
10	03	- 0020	1020	0000	•	5		-	ľ	~	0000				"				
41	l														1				
42	03								l						1				
43	05														1				
															1				
44	05																		
45	05	1433	1446		ì	S15	W 90	1	SL	. 2	1408	3	2 5	2	6	1407 1419	12 15	1411.5	50 6
46	06														ł				
47	08	0342	0359		1+	S 22	E50	2(1c)	s	1	0338	1	7 1	2	CD	0341	5.2	0342	440
	20																		
48	09 09	0510	0522		1-	N112	W70												
49	09	0510	0522		1-	NIJ	W70	1							l				
50	11	1722	1850	1738	2+	S 23	vos.	2(2c)	*s	3	1731	6-	4 5	6	3	1725	75		16
30	11	1722	1830	1730	2,	023	EUJ	2(2()	, ,	3	1131	0	• 5	Ü	6	1729.		1733	135
1									l										
1																			
51	12	1850	2010	1920	2	S 25	W73	3(3c)	*s	3.+	1856	8	9 5	10	*2	1855. 1918.	.5 23	1900.5	525 20
															-	2,,10,			20
52	15	1410	1430		2	N25	E90	1(1c)	*s	3	1354	12	4 5	13	2	1351	19	1354	160
"										-					-				
]				
53	15																		
54	16	* <u>1040</u>	1300	1105	3	N30	E85	10(3c)	*s	3	1044	. 7	6 5	10	*GB	1040	54	1046 1049	1650 1650
															4	1134	110		15
55	17	*1006	1118	1022	3	N29	E76	6(1c)	*s	3	1004	1 7	9 2	6	CD SD		4		
56	17															1013	1	-	
57	17	1851			1-	S 1 P	E73	1(1c)	s	2 -	1843	, ,	7 4	8	3	1840	270		90
"						310	113	4(40)	1	-	1010	. 4	7	0	2	1844 1850	5	1845 1851	5
58	17	*2000	2300	2116	3+	NOO	E69	2(2c)	*01	և 3-	+ 193	7 1	63 4	8	•GI				6000
] "	'	2000	2500	2.10	.	1120	709	2(2C)]	_ 3		•	- '	0		, 2000		2012	
1									1										
1	ı	1							I						1				

32. This SC on March 25th at 0129 UT, was preceded by an earlier phase change on the 24th at 2115 UT.

33. No known flare is reported at the time of the Type II burst on March 26th at 0412 UT., therefore plage and spot data for this event are not available. No SWF and no 10 cm, events are reported at the time of the Type II burst, and no observations were being made at meter wavelengths at that time. No events were reported at anyother single radio frequencies.

 Seven of the 12 stations which report this Sc storm start the storm later, on the 27th at 1136 UT.

35. This event appears in this catalogue only because it repre-

sents the central meridian passage of a large, bright, and active plage which had more than 30 flares during its transit across the disk. However, the activity was not of the type necessary to produce any great solar optical and radio events such as those listed in this catalogue.

37. The 3-hour Kp values indicate that this is only a very minor magnetic disturbance. It was reported as a storm by only two stations, both of which are located in the antarctic polar region.

38. This major SWF on Apr. 2nd at 0250 UT, is accompanied by a large 10 cm, burst and is associated with flare activity in a very long-lived region in its 6th rotation, However, although plage 3907 is a return of plage 3872, its characteristics indicate that there has been a its last appearance. No dynamic available at the time of the SWF

9. This major SWF on April 2nd at flare activity in a region at the flare data is incomplete, but progress while the SWF is r spectrum, only a few small T by Ft. Davis, along with add between 1917 - 1925 UT. At n event consists of a major burs rise in base level. No events single radio frequencies at the topics.

2. VIII - 2L

ATA				PO	LAR CAP A	BSORP	ION		-1		GEOMA	GNETIC	STORM	18	
Max. (UT)	Peak Flux	Obs.	Gr. Day	Onset UT	Rise to Peak	Dur.	Peak Int.	Obs.	Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
									Jan. 02	0909	1.3d	Sc	m	11	5
	(255)	NAG													
	>70 >15	UC CAV													
1703-06	>20 >1300	CAV NBS							1						
706-09	>6300	NBS							į						
1738 1736	>1300 >5600	NBS NBS													
	>280	PRA							08	01	3.5d	g	m	8	5
	- 400	CAV	Jan. 20	1500	16 ^h 86	j 3:	3 1	3							
	235	PRA							21	1256	4 d	Sc	s	19	9
	980	NBS													
	109	NAG													
									29	1313	2d	Sc	m	12	6
									Feb. 03	15	3d	g	m	10	6
1552	>1400 >100	NBS UC								-		•			v
1540 1547	240 510	NBS NBS													
		ŀ							12	1850	2d	Sc	ms	15	6
									18	1834	1.5d	g	ms	1	5
1637	490	NBS							21	02	2.5d	g	m	10	5
2100	460	NBS								1865	1.62	0-		10	_
	> 100	SYD							23	1807	1,5d	Sc	ms	15	7
0004.5	> 900	NBS NBS													
		j							Mar. 01	1610	3d	Sc?	ms?	18	8
									10	0023		Sc	ms	16	7
		İ							15		1.5d	g	m	7	6
		1							21	12	2.5d	E	m	4	5

^{4.} No known SWF is reported at the time of this major flare and Type II burst at 1609 and 2008 UT. Although it occurs late in the lifetime of the flare, it seems likely that the Type II burst is related to some form of activity during this major and long-enduring solar event. The Type II burst covers a frequency range of 155 - 100 Mc. Note the small but very long-enduring rise and fall in flux reported at 10 Cm., and the minor burst followed by a long-enduring noise storm at 169 Mc. In the dynamic spectrum there was also reported an inverted U burst at the start of the flare at 1606 UT.

on March 1st at 0036 UT., therefore plage and spot data for this event are not available. No observations were being made at meter wavelengths at the time of the Type II burst, and no distinctive events were reported at any other single radio frequencies.

^{28.} This major storn is difficult to classify. Nine of the 18 stations start the storm gradually, the other nine start the storm with a sudden commencement. Seven stations rate the storm as severe, and 11 as a moderately severe storm.

^{26.} This major flare on Feb. 28th at 0005 UT. occurs in a region which is a return of the plage described in note No. 17. The Type II burst which occurs after flare maximum was observed by Ft. Davis over the frequency range 140 - 100 Mg.

1957 (CONTINUED)

_[DYNAM	IC SPECTRUI	A DATA					200 M	S DATA			+-		
ent o.	Type I Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	T.
2															
3		g0421/3 g0438/3	*0412- 0416/3		8										
5															
6															
8							CA	0250	40	0303	630	тк	9400	CD	0
9	C1955- 1958/3	b1921/1 b1926/1			н		M CD	1903 1912	27 10		>159	c c			
1	1930/3	g1932/1 b1935/1				}	CD	1954	3		>159	Ċ			
•							CD	0826	70		> 10	N	9400 1500 545	CD CD	04 04 04
1															
2 3			*0004-		s	Ì							167	CD	2:
4			0013/1												
5													9400 1500	SD CD	1
6															-
17	I 0352- 90440/2	G0341- 0343/3	*0347- 0353/1		S		CD	0341	1.5	0342	360	TK	9400 1000	CD	0
18	I_0312-	g0530/2	*0532-		s										
	>0634/2 g0544/3	b0534/1	0544/2												
50	I in progress s all day	G1733- 1734/2 g1736- 1737/1 b1742/1 b1744/1			Н	į	M CD	1727 1733	18 12	1738		c c	460 167	M CD	1
51	C1858- 1902/2 I _s in progress all day	G1858- 1902/2 b1913/1 g1914/1	*1905- 1916/3		н	200- 100	CD	1857.5	18			С	460 167	CD	
52		g1402/1	*1401- 1407/3		н	200- 100	CD	1358	12		1500	N,C	9400 1500 536 167	CD	
53 54							CD	1047	16		800	N	9400	CD	
													600 545	CD	
55													9400	CD	
56 57	C1845/2	G1842-	*1846-		н	230-	CD	1842	9		>75	С	460	SID	
"	C1040/ 2	1845/3 g1855/1	1852/3		n	100		-014	•		713	·	1	ىد	
58	G2011		*2032- 2039/3	* 2011- 2055/2	н	180- 100	CD	2018 2026	97 4	2047 2028	>159 >75	c c	460	CD	
	C2011- 2055/1 I_2036- S2228/2	b2020/1 b2022/1 G2027- 2034/3													

or event No. 41. It is difficult to find any outstanding or centritie solar event as the source of the PCA. Event No. 45 is offered only as a suggestion - and a rather poor one, at that, It is a limb flare in the same region that caused the earlier PCA event on April 3rd (event No. 41).

- 49. Only incomplete flare data is available at the time of the Type II burst on Aprel 9th at 0532 UT, Minor flare activity occurred in a 1001m near the west limb. No known SWF or 10 cm. ev. 35, are reported at the time of the Type II

distinctive events are reported at any other single radio frequencies.

50. The plage and spot data for this event are the same as that given for event No. 47. Note that the modest 10 cm. burst is superposed on a long rise and fall in flux, and at meter wavelengths and radio event follows a similar pattern.

48. Six of the 13 stations start this gradual storm later, on April 9th at 22xx UT.
49. Only incomplete flar data is available at the time of the Type II burst on April 9th at 0532 UT. Minor flare activity occurred in a 100100 agar the west limb. No known SWF or 10 cm, ev. 31 are reported at the time of the Type II burst at 1905 UT. was observed by Ft. Davis over the frequency range 200 - 100 Mc. At meter wavelengths, the radio event consists of a major burst, and a similar type of event is reported at even lower or 10 cm.

- This major SWF and Type II burst on April 18th and 1401 UT, are associated with flare activit at the east limb. The large, bright and active pi a β_Y spot No. 12285, which is possibly a return No. 12225 in plage 3908 (event No. 39). The was observed by Ft. Davis over the frequency 100 Mc. At meter wavelengths, the radio ever a very great burst (without a second part), at reported at other single radio frequencies in similar type of burst occurred throughout the of radio observations.
- This is a very great solar event. The plage and the same as that given for event No. 52. The g April 16th at 1040 UT, was an elevated limb f followed by an extensive system of bright loo

2. **Y**

	P	AGE DA	TA		+		<u> </u>		SUNSPOT	DAT	A		
Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	СМР	Mean			Area	MT.W. No.
120°	S 25	3	2,500	12	1 1	NEW	dppl	May 3.8	S 26	18	2-9		12315
21°	S 28	3.5	10,000	42	2	4939	*lbyl	10,9	S 27	23	3-17	1300	12318
262°	S 20	3	11,000	24	3	3944	JBP L	19.0	S 18	(15)	20-24		12348 12337
28°	N13	3.5	10,000	41	2	3932	* lbyl	11.5	N12	30		>1000	12324
176°	S 10	3	6,500	16	2,5	3956 and 3957	lapl	26.3	S11	15	20-31		12350
196°	N18	3	6,000	35	2	3966	dβpd dβL	24.7 25.0	N15 N23	18 13	19-29 24-31		12347 12356
136°	S 24	2.5	4,000	8	1	NEW	*1 ₇ L	29,8	S 24	15	24-4		12357
97°	S 22	3	5,500	36	1	NEW	Lapl * dBYL	June 01.7 02.3	S 25 S 17	23	26-8 30-8		12360 12368
50° 285°	S 18 N30	3.5	5,200	29	4	3967 NEW	LBpL dBpL	04.4 04.5	S17 S25	30 8	29-10 4-10		12365 12377
			,	-,	•		~~1~	21,7	1100	23	1-20		12387
179°	N18	3.5	9,000	64	2 '	3989 and 3991	lapl •18yl	21,8 22.5	N18 N18	26 39	15-27 15-29	1100	12415 12417
199°	S 35	3.5	7,000	53	2	3986	181	20,9	S 38	27	14-28	1200	12409
with very be- The the	No de any Type B. No letime plage obsee At tt large burs D. This	rved by I istinctive of the oth is II burst mown fla of the T e and spo rved by i e single e burst a t. PCA e	rt. Davis over events are ther single in the	er the free reporter radio free radio free radio free radio free radio may not available ver a free rencies, savelength	equency rand at meter valuencies, and events are events are events. The Taylor randthe only events at the tine at 0206.	ge 200 - 100 wavelengths o at the time of e reported at 8 UT., therei type II burst ge 250 - 170 ent reported me of the Typ	Mc. activity, the rat Type II buthe flare or SW 70. The Type with small ore east limb. was the frequer Mc. the radio e is a con a rise at at any of the ratio with the ratio e is a con a rise at a tany of the ratio with the ratio e is a con a rise at a tany of the ratio with the ratio e is a con a rise at a tany of the ratio with the	at can be it. rst describe VF. II burst on flare activ The Type II rcy range I event consis nd fall in flu te other sing	May 21s Ity in a burst was 65 - 100 ts of a vex. No dist le radio i	t at 1 large, sobser Mc. ery mitinctiv freque	915 UT. is bright played by Ft. At meter mor burst e events a noties.	event is the t any known associated ge near the Davis over wavelengths superposed re reported	
	120° 21° 262° 28° 176° 196° 136° 179° 199°	Mean Mean Long. Lat. 120° \$25 21° \$28 262° \$20 28° \$13 176° \$10 196° \$18 285° \$35 \$pot of the goal o	Mean Mean Ave.	120° S25 3 2,500	Mean Mean Ave. Max. No. Long. Lat. Int. Area Flares 120° S25 3 2,500 12 21° S28 3.5 10,000 42 262° S20 3 11,000 24 28° N13 3.5 10,000 41 176° S10 3 6,500 16 196° N18 3 6,000 35 136° S24 2.5 4,000 8 97° S22 3 5,500 36 50° S18 3 5,200 29 285° N30 3.5 11,000 17 179° N16 3.5 9,000 64 199° S35 3.5 7,000 53 spot of the x spot No. 12281 in region 3 observed by Ft. Davis over the fre No distinctive events are reported any of the other single radio fre any of the other single radio fre any of the other single radio fre Type II burst. sat 68. No komm flare, SWF, or 10 cm. with sum. Sat 68. No komm flare, SWF, or 10 cm. with sum of the other single radio fre Type II burst on May plage and spot data are not avail with every bereath of the single radio frequencies, large burst at meter wavelength burst. The the single radio may plage and spot data are not avail the single radio frequencies, large burst at meter wavelength burst. The the single radio may 19th for the single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies of the single radio fr	Mean Mean Ave. Max. No. Age in	Mean Mean Ave. Max. No. Age in Ident.	Mean Long. Ave. Lat. Max. Area No. Age in Flares Rotations Ident. MT.W. Type 120° S25 3 2,500 12 1 NEW JPpl. 21° S28 3.5 10,000 42 2 4939 • £βγL Jppl. 28° N13 3.5 10,000 41 2 3952 • £βγL Jppl. 28° N13 3.5 10,000 41 2 3953 • £βγL 196° N18 3 6,000 35 2 3966 Jβρd. 136° S24 2.5 4,000 8 1 NEW • £βγL 97° S22 3 5,500 36 1 NEW • £βγL 179° N18 3 5,200 29 4 3967 Jβρd. 2885° N30 3.5 11,000 17 1 NEW • LβγL 1199° S35 3.5 7,000 <td>Mean Long. Mean Long. Ave. Max. Plares No. Age in Flares Ident. MT.W. Type CMP Gr. D. 120° S25 3 2,500 12 1 NEW Jpp£ May 21° S28 3.5 10,000 42 2 4839 - Jβγ£ 10.2 26° S20 3 11,000 24 3 3944 Jpp£ 11.5 176° S10 3 6,500 16 2.5 3985 and 3857 Jpp£ 11.5 176° N18 3 6,000 35 2 3986 Jpp£ 24.7 196° N18 3 6,000 35 2 3986 Jpp£ 24.7 40° S24 2.5 4,000 8 1 NEW Jpp£ 24.7 40° S22 3 5,500 36 1 NEW Jpp£ 2.3 50° S18 3 5,200 29 4</td> <td>Mean Mean Ave, Long. Max. Long. No. Age in Long. Meent. MT.W. Type CMD Mean Area 120° 325 3 2,500 12 1 NEW Jppl. 18.8 S26 21° 328 3.5 10,000 42 2 4699 - £8γ.L 10.9 527 228° 320 3 11,000 24 2 3932 - £8γ.L 10.9 524 28° N13 3.5 10,000 41 2 3932 - £8γ.L 11.5 N12 170° 810 3 6,500 16 2.3 3956 and £-p.L 26.3 511 190° N18 3 6,000 35 2 3866 Jβp.J 24.7 N15 136° 324 2.5 4,000 8 1 NEW - J.γ.L 2.0.8 524 97° 522 3 5,500 36 1 NEW</td> <td>Mean Long Mean Long Ave. Max. Long No. Age in Long Beest. MT.W. Type CMD Mean Long MEAN Long Lab. MT.W. Type CMD Mean Long App L Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long M</td> <td> Moss Moss Moss Moss Moss Moss Moss Places Rotations Edect. MT.W. CMP Moss H Wien </td> <td>Man Man Ave. Max. To. Age in Month Cong. Let No.</td>	Mean Long. Mean Long. Ave. Max. Plares No. Age in Flares Ident. MT.W. Type CMP Gr. D. 120° S25 3 2,500 12 1 NEW Jpp£ May 21° S28 3.5 10,000 42 2 4839 - Jβγ£ 10.2 26° S20 3 11,000 24 3 3944 Jpp£ 11.5 176° S10 3 6,500 16 2.5 3985 and 3857 Jpp£ 11.5 176° N18 3 6,000 35 2 3986 Jpp£ 24.7 196° N18 3 6,000 35 2 3986 Jpp£ 24.7 40° S24 2.5 4,000 8 1 NEW Jpp£ 24.7 40° S22 3 5,500 36 1 NEW Jpp£ 2.3 50° S18 3 5,200 29 4	Mean Mean Ave, Long. Max. Long. No. Age in Long. Meent. MT.W. Type CMD Mean Area 120° 325 3 2,500 12 1 NEW Jppl. 18.8 S26 21° 328 3.5 10,000 42 2 4699 - £8γ.L 10.9 527 228° 320 3 11,000 24 2 3932 - £8γ.L 10.9 524 28° N13 3.5 10,000 41 2 3932 - £8γ.L 11.5 N12 170° 810 3 6,500 16 2.3 3956 and £-p.L 26.3 511 190° N18 3 6,000 35 2 3866 Jβp.J 24.7 N15 136° 324 2.5 4,000 8 1 NEW - J.γ.L 2.0.8 524 97° 522 3 5,500 36 1 NEW	Mean Long Mean Long Ave. Max. Long No. Age in Long Beest. MT.W. Type CMD Mean Long MEAN Long Lab. MT.W. Type CMD Mean Long App L Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long M	Moss Moss Moss Moss Moss Moss Moss Places Rotations Edect. MT.W. CMP Moss H Wien	Man Man Ave. Max. To. Age in Month Cong. Let No.

2. 1111 - 3 6

Event No.	Gr. Day	Beg. UT	End	Max.	Imp.	Posit	ion	No. of	Туре	Imp.	Beg.	Dur	Wide	No. of	Type	Beg.	Dur.	Max.	Peak	McM.
59			UT	UT				Obs.			UT	Min.	Spread Index	Obs.		UT	Min.	UT	Flux	Plage No
	Apr. 18	1310	1353	1323	2	S16	E64	4 (1c)	s	2+	1304	36	5	12	2 4	1304.5 1311.5	7 13	1306.8	385 16	3944
60	21				·															
61	24								i											}
62	26														•					1
63	May 08														1					1
64	09	2325	2338		1-	S 22	W90	1(1c)	s	1	2327	10	5	3	2	2327	3	2328	22	3969
	11	_							1											*3972
65 66	14	0222	0230	0225	1	S 20	E87	1(1c)	*s	3	0222	62	5	3	CD	0223	4	0224	273	3980
																		1000 -	410	*3974
67	14	1840	1850		1	N09	W50	1(1c)	S	1+	1838	25	5	7	2 4	1837.5 1847.5	10 30	1838.5	410 16	-3914
68	19								ļ											
69	19								l											ľ
70	21	1900	1935	1908	1	S12	E63	1(1c)	SL	2	1858	54	5	6						3990
71	25																			*3987
72	26																			ŀ
73	30																			
74	June 01	2329	2356	2344	2-	S 25	W44	1(1c)	*SL	3	2335	77	5	3	3 6	2330 2338.5	30 6	2341.5	10 98	3993
75	0ა	1																		
76	04	0029	0155	0054	2	S17	W22	2(1e)	*SL	3	0030	72	5	3	CD	0040	38	0045	280	*3996
77	04	<u>0859</u>	0950	0902	2	S17	w27	4(2c)	S	3-	0900	30	5	7	SD •SD SD SD	0859 0917 0928 0934	10 11 4 30		350 610 66 52	3996
78	05	1326	1433	1330	2	S 18	W44	8(4c)	s	3-	1328	26	5	12	*2	1326.5 1334.5		1328	725 9	3996
79	06	1130	1148	1133	1	S14	W27	5(1c)							*6 4	1129 1130.5	1.5 4	1129,8	525 8	3997
80	14																			4011
81	17																			ĺ
82	19	1609	1649	1613	2	N20	E45	4(2c)	• s	3	1608	44	5	14	3 •6 4	1445 1608,8 1618,8		1610.2	15 2 2325 24	*4024
83 84	20 21																			*4021

59. The plage and spot data for this event are the same as that given for event No. 57. The Type II burst on April 18th at 1304 UT, was observed by Ft. Davis over the frequency range 220 - 100 Mc.

60. This brief and minor magnetic disturbance was reported as a storm by only three stations - all of which were located in the north and south polar and auroral zones.

61. This storm was reported as a storm by only one station -APIA. However, the 3-hour Kp values indicate a real period of storminess during this interval.

 The weak interval of storminess - covering events No. 60, 61, and 62 - between April 24-27, follows the more disturbed period between March 27-30 by an interval of approximately one solar rotation, or 27 days.

64. The Type II burst on May 9th at 2329 UT, is associated with minor flare activity in a region near the west limb of the sun. The region is a new plage that formed on the disk in the east on May 1. The Type II burst was observed by Ft. Davis over a frequency range of 300 - 100 Mc, No observations exist at meter wavelengths at the time of the burst, and only minor bursts are reported at the higher single radio frequencies.

This is an interesting example of a very large and very bright plage, with a spot of very large area, which produces numerous flares but no great solar or terrestrial effects in the form of large flares, large radio bursts, large

SWF's, PCA, or magnetic storms. Th No. 12318 is one of the largest spots of the to 1300 millionths of the hemisphere

66. The large SWF on May 14th at 0222 UT. small flare activity in a region at the ea No dynamic spectrum observations, and meter wavelengths, exist at the time of the

67. The Type II burst on May 14th at 1841 UT, small flare activity in a very large, veractive plage (3974). This region is very haviour to plage 3972 described in note complex Gy-spot No. 12324 region 3974 largest spots of the year - area equal of the hemisphere (Mt. Wislon data) and proceedings.

ER RADI	O DATA					POI	LAR CAP	ABSOR	PTION					GEO	MAGNET	IC STOP	t M S	
Dur. Min.	Max. UT	. Peak Flux	Obs.	Gr Da		Onset UT	Rise to Peak	Dur.	Peak Int.	Obs.		Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
						•						Mar. 25	0129	1d	Sc	m	8	6
				į į								26	1050	2.3d	Sc	ms	12	7
												29	0337	1,2d	Sc	ms	15	8
												31		1.5d	g	m	2	4
48		(240)	NG															
257 38 60		(632) (383) 1600	HHI HHI N		Apr.	1220	14h	65	_									
14	2359	350	NBS		~	1330	1411	03	31	В		Apr. 03	16	0,5d	g	m	2	5
												05	10	1.2d	g	ms	6	6
12 10		(298) (126)	нні нні	. 0	16	0800	12h	66	26									
1.4 1.6		(343) 326	NAG NAG				:					09	05	2.5d	R`	ms	13	7
11 13	1728 1733	150 270	NBS NBS															
25 15	1900	160 1600	NBS NBS															
18 14 6	1402	(162) 70 >>1500	HHI HHI PRA NBS															
28 20 17		(1262) >400 1100										15	2048	0.5d	Sc	ms	5	6
75		(348)	нні															
0.9		260	NBS									17	1136	3d	Se	ms	14	8
			.120] 														
42	2041	608	NBS															
354 UT.	10	Γ. The 10 cm. ng post-burst ere being mad	increase. I	No dynamic si	nectri	ım ohee	rustions	h	ursts sup	te sun. The 1 serposed on a	very long-en	luring r	ise and t	all in				

a region contains e βspot II burst te 200 - sists of events e that a e range

UT. The 10 cm. event consists of a great burst followed by a long post-burst increase. No dynamic spectrum observations were being made at the time of the large flare. At meter wavelengths, the radio event consists of a very large burst (without a second part).

55. This major flare and SWF on April 17th at 1006 UT, occurred in the same region that was responsible for events No, 52 and 54. No dynamic spectrum observations, and no observations at meter wavelengths, were being made at the time of the flare.

ata are 57. The Type II burst on April 17th at 1846 UT, was observed by Ft. Davis over the frequency range 230 - 100 Mc. The flare data is incomplete, but there seems to be no question about the association with a minor flare in a region near the east

limb of the sun. The 10 cm. event consists of two minor bursts superposed on a very long-enduring rise and fall in flux. At meter wavelengths, the radio event consists of a major burst, without any second part.

58. This is a very great solar event on April 17th at 2000 UT. The plage and spot data are the same as that given for event No. 52. The same active plage (3941) has been responsible for events No. 52, 54, 55, 56, and 58. The Type II Durst at 2032 UT, was observed by Pt. Davis over the frequency range 180 - 100 Mc, and the Type IV emission covered the entire observable spectral range of 580 - 100 Mc. The IO cm. event consists of a very great burst of long duration, and at meter wavelengths the radio event consists of a large burst superposed on a great rise and fall in flux.

1957 (CONTINUED)

went	Type I	Type III	Type II	Type IV	Obs	Freq.	Туре	Beg.	200 MC		Peak	Obs.	Freq.	Туре	
vent No.	Time/ Max. Int.	Time/Int.	Time/Int.	Time/Int.	Obs.	Range		UT	Min.	Max. UT	Flux		Mc/s		
59	I in progress all day C1302-	G1304-	*1304- 1312/3		н	220- 100	ср	1305	6		800	N	9400 1500 600	CD E	
	1304/1	1306/3 											536	CD	
		b1318/1 g1322/2													
60 61															
62															
.63													ļ		
64	I in progress	G2320- 2322/3	*2329- 2334/3		н	300- 100							9400 1000	SED	
65		-542, 5	200.75												
66													9400	SID	
67	I in progress	g1838- 1839/1	*1841- 1843/3		н	200- 100									
68	•	•	*0008- 0016/2		н	250- 170	CD CD	0007 0016	5.5 5	0010 0017	1400 900	TK TK			
69						1							}		
70			*1915- 1918/3		н	165- 100	CD	1857 1924	40 0,5	1918		c c			
71															
72															
73															
74							CD	2339	7		320	TK	9500 2000	CD	
75															
76	10045- 0052/1	III _s in pro- gress <0000- >0612/1			н,з								9500	CD	
77							CD	0907	70		>800	N	600	ECD	
													536 169	ECA	
													81	CD	
78	I in progress all day	g1319/2	*1329- 1333/3+		н	540- 100	CD	1330	4		>250	N,C	600 536 460 61	CD	
79							СТО	1128	2.5		>200	N	600 545	CD	
													166		
80 81															
82	I 1622-	G1609-	*1615-		н	210-	СБ	1615	3	1616	>260	c	545		
	5 2400/3	1613/3	1620/3			100	М	1623	90	1641		С	460	CA	
83 84															
"]															

75. Four of the nine stations that report this storm indicate that there is a second start, on 6th at 00xx UT, which is designated as a sudden commencement.

76. This major SWF on June 4th at 0030 UT, is associated with a flare which evidently produces only a brief noise storm in the dynamic spectrum. However, an unclassified burst is also reported at 0040 UT, which has its counterpart at the high frequencies also. No observations at meter wavelengths are available at the time of the SWF.

77. The plage and spot data for this event are similar to that 79. No known SWF is reported at the time of the large 10 cm. 82. The 10 cm. event on June 19th at 1609

o917 UT. At meter wavelengths the radio event consists of a large major + burst of long duration, and the same kind of major + burst is indicated in the reports of the other single frequencies in the low and intermediate frequency range.

The plage and spot data for this event are similar to that given for event No. 76. The 10 cm, event on June 5th at 1326 UT. consists of a large burst followed by a long but modest post-burst increase. The Type II burst was observed by Ft. Davis over the frequency range 540 - 100 Mc.

seems to be characterized by a burst of that sweeps almost instantaneously through range covered by the single frequencies.

80. This event appears in this ca-alogue only the sents the central meridian passage of a lathat contains a complex βγ spot. Hower associated with this spot did not produce optical and radio events such as those listed.

81. This gradual storm has a second start on

## PLAGE DATA ## Max Max No. Age in Day Lat. Int. Area Flares Rotations ## Max No. Age in Type Gr. Day Lat. Seen Area MT.W. Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## When Area MT.W. Type Gr. Day Lat. Seen No. ## When Area MT.W. Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## MT.W. Type Gr. Day Lat. Seen No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## N	
15.5 1.5 5.20 5.5 9,000 28 2 3993	/.
13.5 1.5 5.20 3.5 9,000 28 2 3993	
July July	
Mily Mily	7
15.0 13° S27 3.5 9,000 26 1 NEW *LyL 05.4 S30 35 28-11 12445	÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7
14.5 247° S32 3.5 1.800 14 1 NEW * 47L 14.6 S33 25 10-20 12473	ı
n No. 88a 90. No known flare is reported in association with the large 10 cm. burst on July 2nd at 0015 UT, therefore plage and accompanied the flare. Throughout the entire range, from	
ix. In the spot data for this event are not available. hd Type I ath WWV 92. This is a very great solar event on hily 3rd at 0712 UT.	
The plage and spot data are similar to that given for event No. 88b. Note that the great flare has a "double" aspect, Sc storm indicated by the spreading of the flare to a different start on location in the plage. This "doubling" is also character-	
istic of the SWF and of the 10 cm, burst. No dynamic spectrum observations exist at the time of the flare. How-	

				FLARE	DATA				SHOR	T-WAVE	RADIO		UTS		10	CM. EV	ENTS			_
Event No.	Gr. Day	Beg. UT	End UT	Max. UT	Imp.	Positi	ion No. o	тур	e Im	p. Beg. UT	Dur. Min.	Wide Spread Index	No. of Ob.s	Туре	Beg. UT	Dur, Min.	Max. UT	Peak Flux	McM. Plage No.	Gi
85	June 22	0236	0257	0241	2	N23 I	E12 1(1c)	s	2	0229	74	5	4	*CD	0231	21	0238	570	4024	
86	22	ļ																	1	
87	25																			
87a	25	ŀ																	4030	
88a	27 28	a2322	2418	2335	1	N20 '		st	. 1	2325	55	-	(MOM)	*CD	8000	250	0141	504	4024	
88b		b2330	2427	2335	1	N14	E32 2(2c)												*4039	
89	30																			
	July 02							sı	L 2	0013	47	5	3	*CD	0015	23	0016.	5 >630		
91	02																			
92	03	*0712	0830	0745	3+	N14 V		s	2		>60			*6	0726.5	31		585	*4039	
		*0830	1145	0840	3+	N10 V	W42 18(5c)	*S	3	0830	44	5	9	6 *6	0805,5 0832			>600		
93	03																			
94	04																		*4046	
95	05																			
96	05																		4044	
97	16	0731	0816	0744	1+	N31 E	580 9(4c)	SI	. 3	0721	59	5	8	CD	0730	21	0734		*4065	
98	16	1742	2008	1804	1+	S33 V	V28 5(5c)	SI	. 3	1740	105	5	8	6 4	1739 1811	32 229	1757	350 30	4061	
99	17	0112	0148	0116	1+	N11 E	2(2c)	s	2-	- 0127	-	-	(1)	CD	0114.5	3,5	0115	269	*4065	
100	19							İ												
101	20	2358	0100	0026	1	N29 F	E18 2(2c)	*SI	. 3	0007	60	5	7	6	0013	8.8	0013.5	465	*4065	
102	21	0633	0756	0700	2	N30 F	E15 10(3c)	*5	3	0647	60	5	8	*2	0659.5	4		536	*4065	
																-				
103	21	1320	1442	1337	2	N29 E	E12 8(4c)	s	2-	1335	45	5	10	9 *2	1329.5 1334.5	5 6	1335,9	35 850	*4065	
	he plage a																			

The plage and spot data for this event are similar to that given for event No. 82. The large 10 cm, burst on June 22nd at 0231 UT, appears to have related radio events only at the higher frequencies. No distinctive events are reported at meter wavelengths at the time of the 10 cm, burst, and in the dynamic spectrum there is only a noise storm, with continuum, in progress throughout the day.

^{86.} The onset of this PCA event on June 22nd at 0500 UT. is superposed on the earlier weak event described in event No. 83.

^{87.} This Sc storm had a small initial impulse preceding the

This Sc storm had a small initial impulse preceding the main impulse.
 This active region is similar to the plage described in note No. 65. The \$\beta\$ ps spot No. 12426 is the second largest spot of the year - area equal to 1800 millionths of the hemisphere (Mt. Wislon data),

^{88.} The flare event associated with the large 10 cm. burst on June 28th at 0008 UT. is ambiguous. Two flares occurred simultaneously between 27th, 2322 UT. and 28th, 0027 UT., in two different regions on the sun. Information concerning

both of these flares is given. The flare described occurred in the region described in event No. 82. To burst resembles a long-enduring rise and fall in flynamic spectrum, the event consists of Type III. noise storms. The SWF is taken from the McMarcacata.

Four of the 16 stations that report this severe indicate that the storm has a second gradual July 1st at 17xxUT.

ER RAD	O DATA						POLA	AR CAP A	BSORP'	TION				GEOM	AGNETI	C STORM	<u> </u>	
Dur. Min.			ak lux	Obs.		Gr. Day	Onset UT	Rise to Peak	Dur.	Peak Int,	Obs.	Gr. Day	Beg. TU	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
25 12 26.5		1	51) 10	HHI HHI UC PRA														
												Apr. 21	03	0.6d	g	ms	3	4
												24	00	1d	g	m	1	5
												26	02	1.3d	Sc	m	4	5
												May 08	21	0,7d	g	m	4	. 5
1.8 2.5		(1	80) 23	NAG NAG														
				NAG														
1.7				MAG														
												1						
						May												
						19	0200	1	12,	(1)	L							
												26	00 0822	1d	g Sc	ms m	3 12	5 5
												30	0022	1,2d	J.C			•
29.5 4.5	i	!	549 (34)	Tk NAG								June						
					}							03	04	4d	g	ms	9	6
25	0045	•	464	TK														
9			841															
71 80		>	370 l 334	UC PRA	İ													
16 84 1.	5		135 >15	UC														
45			>15	CAV														
5 4. 1.	5	>3	66 118 3100	UC PRA NBS														
2 5			>5 75	CAV UC	•													
2 5			200 135	N UC														
																		_
			45-									17	21-	- 2 d	g	ms	4	5
45 180 4.		>:	400 2600	n NBS		June												
						20 20			<u>48</u>		В							
					1													

spectrum obne radio event short duration t the complete

ause it repree, bright plage t, the activity ny great solar this catalogue.

th at 18xx UT. . represents a very great burst, superposed on a very long-enduring rise and fall in flux that began more than an hour earlier. The flare that is associated with this event is not outstanding, but occurred in a very large, very bright and very active plage. The $\beta\gamma$ spot No. 12417 is one of the largest spots of the year - area equal to 1100 millionths of the hemisphere (Mt. Wislon data). The Type II burst was observed by Ft. Davis over the frequency range 210 - 100 Mc., and was accompanied by the onset of a noise storm. At meter wavelengths the radio event consists of a major burst followed by a long rise and fall in flux.

by a long rise and fall in flux.

83. The peak absorption for this PCA event is not known.

Bailey refers to this as "a weak event."

84. This active region is similar to the plage described in note No. 65. The p spot No. 12400 is one of the largest spots of the year - area equal to 1200 millionths of the hemisphere.

ZIII - 3R

			F:	LARE I	DATA				SH	ORT-V	VAVE R	ADIO F	ADEOU	rs		10 CI	M. EVEN	TS	-	
Event No.	Gr. Day	Beg. UT	End UT	Max. UT	Imp.	Posit	ion	No. of Obs.	Туре	Imp.	Beg. UT	Dur. Min.	Wide Spread Index	No. of Obs.	Туре	Beg. UT	Dur, Min.	Max. UT	Peak Flux	McM Plage
104	July 21	1405	<u>1500</u>	1410	1	N11	E62	6(4 c)	SL	1	1408	23	-	(2)						*407
105	21	<u>1737</u>	1752	1742	1	N22	W12	2(2c)							2	1742.7	5	1743.3	165	*406
106	21	2215	2302		1-	N20	W15	1(1c)							6	2243.3	5	2243.7	32	*406
107	22																			
108	22	*0953	1150		3	N15	E51	1(1c)												*407
109	24	* <u>1712</u> * <u>1801</u>	1801 2025	1737 1828	3	S 24 S 24		4(4c) 4(4c)	SL *S	3	1727 1759	113 113	5 5	8 8	*GB	1628 (1733) (1801)	290	1645 1736.8 1810.5 1838,5	630	*407
110 111	24 Aug. 01	1352	1437	1420	1	S 35	E04	1(1e)							3 3 3	1400 1407 1438	510 18 24	- 1412.5 1448	25 21 18	*408
112	02	1432	1448	1436	1	N26	E32	9(5c)	s	2-	1435	15	5	7	6	1435.5	7	1436	60	*408
113	03																			
114	03	1721	1735	1723	1	N26	E17	3(3c)	s	2	1720	40) 5	7	6	1720.5	6.5	1721.1	90	*408
115	05	1900	1954	1905	1	N26	w 08	4(4c)	s	1+	1904	16	5 5	6	6 5	1902 1905.5	3.5 40	1904.5	44 -5	*408
116	06														SD	0229,2	1,8	0229.5	255	
117	06	0423	0433	0426	1-	N25	w22	1(1e)												*408
118	06																			
119	09	1330	1442	1355	1	S33	W77	2(2c)	*SL	3	1340	200	5	6	3	1304	> 660	1515	38	*408

104. This incomplete Type IV event on July 21st at <1513 UT. is being associated with a flare which began earlier, at 1405 UT. The single frequency radio events reported with this flare seem to indicate that such an association is not impossible. No known 10 cm. event is reported with the event at 1405 UT., and the SWF is taken from the CRPL "check-list." The flare in question occurred in a region which is the return of a plage related to events No. 88b and 92. No distinctive event is reported at meter wavelengths. At 450 Mc., NBS reports a great M+ burst, "one of the largest bursts ever observed," from 1411 - 1529 UT.

105. The plage and spot data for this event are similar to that given for event No. 97. No known SWF is reported at the time of the Type II burst on July 21st at 1746 UT., which was observed by Ft. Davis over a frequency range of 200 - 100 Mc. At meter wavelengths the radio event consists of a major + burst. At intermediate and higher frequencies the

106. The plage and spot data for this event are similar to that given for event No. 97. The Type IV emission on July 21st at 2243 UT. was observed by Ft. Davis over the frequency range of 580 - 300 Mc., and appears to be associated with a relatively minor flare for which no known SWF was reported. Ft. Davis also reports an unclassified burst at 2244 UT.

108. It is quite probable that this event on July 22nd at 0953 UT. in region 4075 is not a real flare of importance 3. It may be only a very bright plage. Two other stations were watching a flare in progress in another region on the sun at this same time, and neither of them report this flare in region 4075. It is not likely that they would have missed a flare of Imp. 3. No known SWF, and no known 10 cm. events are reported at the time of the flare, and no dynamic spectrum observations exist at that time. The response

throughout the entire range of the si dicates that the radio event consists of short duration. These are all prob a flare of Imp. 1 in progress at this region 4073.

This is a great solar event on July 2: the event described in note No. 92, the aspect to the flarc, SWF, and great Ap spot No. 12496 is a return of the lar in region 4030. The Type IV emission seems to be associated with the secon and was observed by Ft. Davis over frequency range of 580 - 100 Mc. At me radio event consists of two parts - a r with bursts, during the early phase of great rise and fall in flux with a great it, during the second phase of the flat.

RADIC	DATA					PC	DLÀR CA	P ABSC	RPTION					GEOM	AGNETIC	STOR	AS	
ur. Iin.	Max. UT	Peak Flux	Obs.		Gr. Day		Rise to Peak			Obs.		Gr. Day	Beg UT	Dur.		Int.	No. Sta. Rep.	Max. Kp
18 8 7	0238	1470 (92) (46)	TK NAG NAG		June 22	0500	44h	115	40	<u>B</u> ,L		June 25	0047	3.5d	Sc	ms .	15	7
50 8.2 1.3 1.5 8.5 34	0311	600 >239 164 222 (262) >77 610	TK SYD SYD SYD NAG SYD NBS									30	0528	2 d	Sc	s	16	8
21 3 2.5 1.3	0016.5 0016.3 0016.3 0016.4	>1106 (305) (70) (154)	TK NAG NAG NAG									July 02	0857	1.3 a	Sc	ms	14	8
45 20 50 20 60 20 38 22 72 14.5 60 9 28	0742 0841 0809.5 0839.6 0809.7 0840.4	(196) (2960) (1690) 928 (7570) (8200) 113 312 > 324 850 5200	NAG NAG NAG UC															
9 28 15 5	0745 0837	> 400 > 400 > 400 54 55	UC JOD		July 03	100	0 12 h	52	74	<u>B</u> ,L,H								
7.7 7.5 8	0733.5 0733.9 0734.8	>1255 (147) (151)	TK NAG NAG									05	0043	0.5d	Sc	ms	14	7
53 47 40 30 18 36	1748 1757	48 (627) (200) > 324 1000 > 200	UCL HHI HHI UC N UC															
2 4 2	0115.3 0115.5 0114	34 (24) 1200	NAG NAG NBS									19	13	0,5d	g	m	2	5
9 15	0019 0018,6	1016 (122)	TK NAG															
1.5 4 9 2 8 4 70	0633.2 0700.3 0701	820 916 (122) 78 24 70	TK NAG UC N UC															
14 14 1.5 31.5 8 6 16 75	1321,5 1330,5 1338,9 1355,7	>366 168 210 >362 1300	UC PRA NBS UC															
-burs		F-series bull		1			-		No. 97	No dynai	nic spectrum	observation	s exist	at the tir	ne			

-burst ype IV ire ob-meter najor + 101. The plage and spot data for this major SWF on July 21st at 0007 UT. are similar to that given for event No. 97. In the dynamic spectrum, in addition to the small Type III burst, Ft. Davis also reports an unclassified burst at 0019 UT. No distinctive event is reported at meter wavelengths at the time of the SWF, and large microwave bursts are reported at the very high frequencies.

102. The plage and spot data for this major SWF and 10 cm. burst on July 21st at 0647 UT. are similar to that given for event

No. 97. No dynamic spectrum observations exist at the time of the event. Only a minor burst is reported at meter wavelengths, and mostly minor bursts of short duration are reported at intermediate and higher frequencies.

103. The plage and spot data for this event are similar to that given for event No. 97. No dynamic spectrum observations exist at the time of the large 10 cm, burst on July 21st at 1334 UT. (This burst is one of those rare events which is preceded by a "precursor.") The single frequency reports indicate that the radio event consists of a major + burst, at the intermediate and higher frequencies.

event om the in the

CM Gr.	AP Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age In Rotations	Ident.	MT.W. Type	CMP Gr. Day		н	When Seen	Агеа	MT.W
	ıly									July	Lat.		Jeen		110.
26	0.	95°	N16	3.5	9,000	54	3	4039	.lβpL	26.1	N10	26	19-1		12503
20	•	1400							40.4						
22	.0	148°	S 21	3	7,000	31	3	4030 _	lppl	22.8	S24	29	17-28		12496
At 01		9°	S 28	3.5	7,600	55	2	4044	lapl	Aug. 1.0	S 28	26	26-6		12513
									*Lyl	2.5	S 30	26	27-8		12514
04	.5	330°	N23	3.5	5,000	42	2	4057	lppl	4.6	N26	23	28-10		12516
							1								
	es ir	1-	from	ionalaa	is there				the hours. T						

th at 1712 UT. Like ere is a "doubling" 10 cm. burst. The starting at 1802 UT d phase of the flare, he enite observable ter wavelengths, the nodest rise and fall, the flare, and a very burst superposed on re. Only at the high This small PCA event is not listed in Bailey's catalogue of principal events, but is listed in the NASA proton manual. The intensity of the event is estimated from riometer records.

111. This Type IV event on August 1st at 1409 UT, is associated with a rather modest flare which occuired at a high latitude of 35°, in a large, very bright and very active plage in its second rotation. The y spot No. 12514 is a return of yspot No. 12449 in a region 4044, No known SWF is reported at the time of the Type IV event. Note that the 10 cm. event consists of several small bursts superposed on a long-enduring rise and fall in flux that listed for more than 8

radio frequency reports indicate that a large burst occurred at all wavelengths practically simultaneously with the start of the Type IV burst.

112. This Type II burst on August 2nd at 1438 UT, was observed by Ft. Davis over a frequency range of 210 - 100 Mc., and is associated with a relatively minor flare event in a very bright and active plage. This region, plage 4083 is responsible for 5 events in this catalogure - Nos. 112, 114, 115, 117, and 121, and probably also for two others - Nos. 113 and Ills. The radio event consists of a major burst of short duration which occurs practically simultaneously at all radio frequencies, from the low to the very high frequencies.

\neg	Tuno T	DYNAMIC	SPECTRU	M DATA			 		200 M	C/S DATA						HEF
Event No.	Type I Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg. UT	_
85	I with con- tinuum, in progress all day				S								9500 2000 1000	CD CD CD	0232 0233 0234	
87 87a																
88a 88b	I < 2335- \$-0534/1	III < 2335- \$>0534/3			s		CD	2330	0.7		250	тк	9500 1420 1420 1420 1000 600 460	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2352 2357 0016 0035 0011 2340 2346	
89													9500	SID	0015	;
90	I in progress s all day	III in prog- ress all day			S		CA	0030	35	0047	400	тк	3750 2000 1000	8D 8D	0015 0016 0015.7	
91 92							CD CD CD	0802.5 0837 0849	1.5 4 25		300 3400 700	N N N	9400 9400 2000 2000 1000 600 600 545 545 169 80	FD CD CD CD CD CD	0730 0831. 0726 0831 0723 0836. 0722 0824 0833 0805 0832 0834	
93 94 95 96 97													9500	CD	0832 0731	
31													2000 1000 600	CD	0731 0731 0735	.5
98	[1754- ⁸ 1819/1		* 1801- 1825/3	н	580- 100		CD	1753	54		850	С	9400 1500 600 541 161	CD CD	1740 1742 1751 1751 1803	
99	:	G0114- 0116/3	*0125- 0131/2		s		СО	0113.8	1.8	0114.5	900	тк	200 100 16	CD CD	0114 0114 0113	1
100 101	I 0112- 80127/1	g0016/1 b0033/1			н								950 200		0012 0012	
102	VAZ 1/ 1	25000/ 1					CD	0702	14		120	N	950 950 100 60 54 16	0 CD 0 SD 0 CD 0 - 5 CD 9 CA	0632 0659 0655 0659 0702 0700 0657	9.8 5 9 2 0 7
103							СБ	1329	30		>250	N	60 60 53 53 45 45	6 SD 6 CD 6 CD 6 CD 6 SD 6 CD	133: 134: 132: 133: 132: 133: 134:	6 1 1.5 8 6 2

This active region is similar to the plage described in note No. 80.

are reported at meter wavelengths, Region 4005 in a remarkable plage, being directly responsible for 7 events into actalogue (Nos. 97, 99, 101, 102, 103, 105, and 106) and also probably for events No. 100 and 107.

87. The large SWF on July 16th at 0721 UT, is associated with flare activity at the east limb of the sun, in a region which is very large, very bright, and extremely active. This plage is a return of region 4024, which was responsible for events No. 82, 85, and 88a, and probably also for Nos. 83, 86, 87, and 89. The βf spot No. 12481 is a return of the βγspot No. 12417 in region 4024. No dynamic spectrum observations exist at the time of the large SWF, and no distinctive events

complex burst followed by a very long-enduring brief burst of emission was observed by Pt. Davis over the eservable range of frequencies from 580 - 100 Mc. wavelengths, the radio event consists of a great

99. The plage and spot data associated with this Type on July 17th at 0125 UT, are similar to that given No. 97. The SWF which is reported here, is taken CRPL unpublished "check-list," and does not appe

2. VII -4R (

2. **VIII**

ER RADIO I	ATA			-	POLAR	CAP ABSC	RPTION						GEOMAG	NETIC S	TORMS		
Dur. Min.	Max. UT	Peak Flux	Obs.	Gr. Day		Rise to Peak		Peak Int.	Obs.		Gr. Day	Beg. UT		Туре	Int.	No. Sta. Rep.	Max. Kp
10 70 32 44	1428.6 1459.2	> 1300 > 1300 > 1300 27000 29000	N NBS														
9 2 5		72 60 > 243	UC N UC														
4 5.5 5 14 10	2243.7 2246.3 2214.1 2243.4 2306.6	(30) (74) 11000 > 26000 260	NAG NAG NBS														
										İ	July 22	0419	1đ	Sc	ms	6	6
3 3 8.5 14 2.5	0952	162 >1400 351 126 (100)	UC N PRA UC CAV														
18 19 48	1736 1737	(336) (155) 246	нні нні uc														
29 90 74 39	1830.8 1832	1200 1700 1000	N NBS NBS	July 2 4	2015	1;	2 (2)	L,i	ı.								
11 87 20 12 240	1412 1413	(295) (122) 66 75 220 > 240	HHI HHI UC N NBS UC				- (- /	_,	•								
7.5 2.5	1436 1436	(355)	нні нні														
5 3 3 27	1436	72 70 2800 > 240	UC N NBS UC							:	Aug. 03	1557	0.54	Sc	m	8	
7 4.5 5 7	1722.9	114 250 340 250	UC N NBS UC							: : :	••	2007	0.00	S.C.		•	6
5 7	1905	250 >230	NBS UC														
1 1	0229.7 0229.2	409 (13)	TK NAG														
0.5		61	SYD														
82 1 0.4 105 1		170	UC UC NBS UC UC								06	0509	1d	Sc	m	9	6
gust 9th at portant Ha e sun. The flux which distinctive ime of the on a long- er low and						,								-			

- 5R

				FLARE	DATA				SF	IORT-V	WAVE F	ADIO F	ADEOU	TS		10 C	M. EVEN	TS.		
Event No.	Gr. Day	Beg. UT		Max. UT	Imp.	Posit	tion	No. of Obs.	Туре	Imp.	Beg. UT	Dur. Min.	Wide Spread Index	No. of Obs.	Type	Beg. UT	Dur. Min.	Max. UT	Peak Flux	McM. Plage No. (
120	Aug.																			
120 121	09 10	0125	0142	0129	1	N26	W71	1(1c)	*SL	3	0100	60	5	7	*CD	0126.7	2.5	0127.5	1400	*4083
														1						
								·												
122	12																			
123	20																			
124	22								l											*4112
125	28	*0913	1404	0925	3	S31	E33	11(4c)	•s	3	0917	138	5	5	*6	0943	40		1192	*4125
				0955											4	1030	90			
									l											
									1											
126	28	2010	2048	2024	2+	S 28	E30	4(3c)	s	2+	2020	18	5	8	*2 4	2017.7 2022.5	5 15	2019,5	760 10	*4125
127	29																			
128 129	29 29																			l
130	30								SL	2	2215	25	5	9	2	2210	10	2213.	7 480	:
""	00														4	2220	40		30	1
		ŀ																		
															1					
131	31]
132	31	*1257	1455	1312	3	N25	W02	11(4c)	*s	3+	1303	220	5	10	9	1256	5		13	*4124
															*2 4	1301 1406	65 205	1315.	5 3900 35	
1 1									1											
	•								1											
		,																		
									İ											ļ
133	31 Sept.																			
134	01	0204	0224	0209	1	N13	W08	2(1c)	*s	3	0204	51	5	5	l					*4124
		1																		1
		Ì																		
135	01	0946	1030	0952	2	N12	W09	6(2c)	s	2	0950	40	5	4	•6	0949	7	0950	605	*4124
																				i
	1																			
136	02								1											
137	02	0409	0445	0412	1	N14	W25	3(1c)	SL	1+	0400	70	4	2	CD	0411	13.5	0420	437	*4124
1																				ļ
															1					

121. The plage and spot data for this event are similar to that given for event No. 112. The Type II burst on August 10th at 0129 UT., and large SWF and 10 cm. burst, are associated with a modest flare of Imp. 1 which occurred in region 4083 when it was near the west limb of the sun. The Type II burst was observed by Ft. Davis over a frequency range of 330 - 100 Mc. The single frequency reports indicate that the radio event probably consisted of a large burst of short duration that swept through the entire frequency range, from high to low frequencies, almost simultaneously.

 Three of the nine stations that report this storm do not start the storm until the following day, on 13th at 03xxUT.

123. This storm was reported by only three stations, which were all located at high geomagnetic latitudes.

124. This active region is similar to the plage described in note No. 35. The βp spot No. 12563 is a return of the βp spot No. 12503 in region 4075.

125. This is a very great solar event on August 28th at 0913 UT., which occurred in a very large, very bright, and very active plage in its third rotation. The rereturn of region 4082, which was respoin No. 119 and was followed by the PCA evcomplex 7 spot No. 12579 is a return of 7 in region 4082, which was a return of 8 region 4044. No dynamic spectrum obserthe time of the large flare at 0913 UT. H radio emission has been deduced by Hakura frequency events. These reports indicate to occurred which had the characteristic of flux at meter wavelengths and at the frequencies.

		DYNAM	IIC SPECTRU	M DATA					200 M	C/S DATA					ő
Event No.	Type I Time/Max. Int.	Type III Time/Int,	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Mc/s	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg UT
104				*<1513- 1523/3	н	580- 200							545 545 450 450	CD CD	1406 1418 1411 1445
105		G1743- 1744/3	*1746- 1752/3		н	200- 100	CD	1742	8	1744	>70	C	600 545 169	ESD SD CA	1741 1743 1743
106	C2212- 2215/1	G2208- 2209/3 g2213- 2215/3 g2241/2 g2247/2		* 2243- 2315/3	н	580 300	FD	2237	11		>250	N(H)	9400 1000 450 450 450	CD F CD CD CD	2243 2241 2211 2228 2303
107															
108							СО	0950	3		>250	N	600 545 536 169 81	CD CD CD FA CD	0950 0950 0947 0950 0951
110	I in progress s all day	b1819/2+ g1924/1 G1926/1+		* 1802- 1915/3	н	580- 100	M M CA	1645 1801 1812	35 94 8	1834	> 200	c c c	9400 1500 600 600 545 450 167	50 50 CD CD CD CD	1730 1730 1801 1851 1801 1803 1610
111	I in progress	g1356/1		* 1409-	н	270									
	\$1303-1441/2	g1356/1 g1404/3 b1405/2 g1432/1 b1436/1 g1454/3		1459/2	н	270- 100	M CD	1353 1409	47	1415		c c	9400 1500 600 545 450 169	SED SED SED MED CA	1409 1408 1407 1409 1350 1408
112	I 1430- 1436/2 C1436- 1438/3	b1430/1- b1433/1- G1436- 1437/3 g1440/1	*1438- 1442/3		Н	210- 100	CD	1436	6	1436.5	> 53	С	9400 2000 600 545 450 169	CD CD CD CD CD	1435 1435 1436 1436 1435 1438
113													1		
114	C1720- 1727/3 I 1720- S1836/2	g1720- 1722/3 G1723- 1725/3 g1727/2	*1724- 1729/3		Ħ	160- 100	CD	1720	8		> 53	С	600 545 450 169	CA CD CD CD	1721 1720 1720 1720
115	1 2030- \$2400/1	G1902- 1906.5/3 G1907- 1913/2 G1920- 1922/2	*1907- 1910/3		н	165- 100	SD	1902	3.5	1905	>800	OSL	450 169	CD CD	1903 1902
116		G0229- 0230.5/3 b0231/3 G0232- 0233.5/2	*0234- 0246/2		s								9500 1000	CD SD	0229 0229
117		g0423- 0425/1 G0425- 0427/2 g0427.5-	*0431- 0438/2		s •		SD	0425.5	0.5		240	TK	600	CD	0427
		0430/1													
118	I 1246- ⁸ 1420/1	g1312/2 g1315/2+ G1517- 1519/3			н								600 600 450 169	80 80 80 80 80	1300 1314 1354, 1200

114. The plage ans spot data for this event are similar to that given for event No. 112. The Type II burst on August 3rd at 1724 UT, was observed by Pt. Davis over a frequency range of 160 - 100 Mc. The same comments can be made about this Type II burst and its related optical and radio events as were made about the Type II burst described in note No. 112.

115. The plage and spot data for this event are similar to that given for event No. 112. The Type II burst on August 5th at 1907 UT was observed by Ft. Davis over a frequency range of 165 - 100 Mc. See comments in note No. 112. It should be noted that the associated 10 cm. burst at 1902 UT. is followed by one of those periods of reduced flux, referred to as "absorption" or a "negative burst."

Wavelengths at the time of the Type II burst, and only a minor burst of very short duration was reported at the higher frequencies. See comments in note 112.

The plage and spot data for this event are similar to that given for event No. 112. No SWF is reported at the time of the Type II burst on August 5th at 0431 UT., and no 10 cm. observations exist at this time. See comments in note No. 112.

116. No known flare or SWF were reported at the time of the
Type II burst on August 6th at 0234 UT., therefore plage 119. The plage and spot data for this event are similar to that

and spot data for this event are not available. (Since region 4083 has been responsible for the Type II events described in Nos. 112, 114, 115, 117 and 121, it is tempting to assume that this event on August 6th is also due to similar activity in this region. Indeed, the ability to produce Type II bursts appears to be one of the outstanding characteristics of the region.) No distinctive event was reported at meter wavelengths at the time of the Type II burst, and only a minor burst of very short duration was reported at the higher frequencies. See comments in note 112.

note No. 112.

given for event No. 111. The major SWF on At 1340 UT. Is associated with a relatively unim brightening in a region near the west limb of the associated 10 cm. event consists of an increase in lasts throughout the observing day (11 hours). No events are reported at meter wavelengths at the large SWF, and only minor bursts, superposed enduring rise and fall in flux, are reported at oth intermediate single frequencies.

2.011 -5R

		PLA	GE DAT	<u>A</u>				·		UNSPOT			Area	MT.W.
P Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat.	н	When Seen	Area	No.
Aug. 22.5	92° 353°	N14 S 27	3.5 3.5	22,000 8,000	43 61	4 3	4075 and 4078 4082	lad lBpl • l7L	Aug. 21.6 21.9 31.1	N10 N16 S30	12 26 28	15-20 15-27 24-6		12562 12563 12579
31.:	5 3334	N22	2 3.5	21,000	110	3,2	4083, 4084, 4095, 4096	dbpl • Ibyl • Ibyl	30.8 31.8	N25	17 23 20	27-5 25-7 25-6	1700	12585 12580 12581

ble for event No. 120. The pot No. 12514 t No. 12449 in tions exist at ever, Type IV om the single a great burst ise and fall in intermediate

given for event No. 125. The Type II burst on August 28th at 2022 UT, was observed by Ft. Days over the frequency range 330 - 100 Mc., and was also observed by Michigan. The 10 cm. event consists of a large burst of relatively short duration. The single frequency reports indicate that the radio response consists of a major burst of very short duration. The single frequency reports indicate that the radio response consists of a major burst of very short duration at the low and intermediate frequencies.

- 130. No flare observations were being made at the time of the Type II and Type IV events on August 30th at 2212 UT., therefore plage and spot data for this event are not available. The single frequency events, however, indicate that a major event took place on the sun, which consisted of a

2. VIII - 6L

	L		FI	LARE D	ΛТΑ				SH	ORT-W	VAVE RA	ADIO FA		`S		10 C	M. EVE	NTS		
Event No.	Gr. Day	Beg. UT	End UT	Max. UT	Imp.	Pos	ition	No. of Obs.	Туре	Imp.	Beg. UT	Dur.	Wide Spread	No. of Obs.	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	McM. Plage No.
No.								Ous.				WIIII,	Index						Flux	
138	Sept. 02	a <u>1257</u> b <u>1313</u>	1346 1410	1303 1316 1330	1 2+	N10 S34		6(3c) 5(4c)	G S	1 2-	1259 1324	>25 43	5	8	3 2 2 2 2	1247 1258 1317.3 1321.3	250 6 4 5.5	1330 1259.7 1319 1324	105 56 30 40	a *4124 b *4125
139	. 02																			
140	03	0037	<u>0116</u>	0049	1	N24	W24	1(1c)	s	2+	0040	35	5	5	CD	0034.5	17.5	0037	462	*4124
	03	1019	1103	1023	2	N15	W40	6(2c)	s	2+	1020	42	5	5	*6	1021.5	13		738	*4124
141	03	1018	1103	1023	2	NIJ	W-10	0(20)	3	2+	1020	42	3	3		1021,5	13		130	1,21
142	03	*1412	<u>1656</u>	1428	3	N23	W30	14(7c)	*s	3	1420	103	5	10	*2 4	1417 1442	25 130	1424	1350 70	*4124
143	04																			
144	07	0810	0845	0823	1+	N15	w 88	12(4c)	*s	3	0806	36	5	11	*2	0811.5	9		2220	*4124
145	08	1627	1634		1-	\$13	E25	2 (2c)												4138
146	10	* <u>0223</u>	0300	0250	3	N14	E16	1(1c)	s	2	0225	20	-	1	SD	0223	35	0228	349	*4134
147	11	0140	0200	0142	1-	N15	E90	2(2c)	G	-	0157	>45	-	1	SD	0141,2	1	0141.5	376	4148
148	11	*0236 * <u>0243</u>	0722 0722	0300 0300	3 3	N13 N13	W02 W02	5(3c) 5(3c)	*SL	3	0244	110	5	5	*CA	0244	75	0300,7	1110	4134
149	12								G	2	0202	57	-	1	*CD	0220,5	2	0221.3	610	
150	12	<u>0703</u>	0740	0713	2	N09	W15	7(3c)	S	3-	0702	32	5	6	6	0708	7	0709	443	4134
151	12																			
	L	L							<u> </u>						1		oues th			1

138. Both of these optical events, on September 2nd at 1257 and 1313 UT., are given here as possible predecessors of the PCA event that follows at 1700 UT. (event No. 139). Whether the PCA is due to one or the other flare event, or the combined effect of both flares, cannot be determined unambiguously. Information is given about both flares, one of which occurred in the active region 4124 (for plage and spot data, see event No. 132), the other in active region 4125 (for plage and spot data, see event No. 125). The 10 cm. event consists of several small bursts superposed on a long-enduring rise and fall in flux. In the dynamic spectrum, Ft. Davis was not observing at this time. Although the

Michigan reports indicate only weak Type III bursts, and noise in progress throughout the day, Type IV radio emission of importance 3* is deduced by Hakura from 1310 - 1410 UT. This seems quite possible, from the single frequency events. At meter wavelengths the radio event consists of a rise in base level, and the other single frequency reports indicate that the event is a major + burst which consists of a large burst and a rise and fall in flux.

 The plage and spot data associated with Type II event on September 3rd at 0036 UT, are similar to that given for event No. 132. The Type II burst was observed by Ft. Davis over the frequency range 580 - 100 M

141. The plage and spot data for this evingiven for event No. 132. No dynamic sexist at the time of the large 10 cm. but 1021 UT. No distinctive event wavelengths at the time of the burst.

142. This is a large solar event, on Septe
The plage and spot data are similar
No. 132. The 10 cm. event consists
followed by a long-enduring post-by

DATA				POL	AR CAP	ABSORI	PTION		\Box	-		GEOM	AGNETIC	STORM	.s	
Max. UT	Peak Flux	Obs.	Gr. Day	Onset	t Rise to			Obs.		Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
0128.5 0128.6 0128.7 0130 0127.9	1689 (550) > 196 (175) 77 1200	TK NAG SYD NAG SYD NBS	Aug 09		10h	50	25	В		P						
										Aug. 12 20	04 13	2d 0.8d	g Sc	ms m	9	6 5
0950 0947 1001	(693) (692) 60 - 30	HHI UCL UC UC														
2022 2017.9 2023.6	54 > 7100 > 5700	SYD NBS NBS														
			29			27	26	<u>в</u> ,н								
			29	1400	12h	58	66	₿,∟,н		29	1921	1d	Sc	ms	16	7
2213 2213.7 2213 2215 2214.6 2234.5 2215.2 2233	> 1351 (619) (433) 315 1900 420 > 5000 810	TK NAG NAG SYD NBS NBS														
	(> <u>900</u>)	нні								31	12	1d	g	ms	9	7
1325	> 450 > 5000 14000 >> 300	HHI UC N NBS UC														
1252 1305	132	JOD														
			31	1500	12h	46	39	<u>B</u>								
0204.5 0233.2 0238.8 0242.0 0204 0205 0205 0205	934 491 481 480 (238) (195) 264 (83)	TK TK TK TK NAG NAG SYD NAG														
0950 0951 0954 0946	(545) 324 550 590 >330 >128	HHI UC N GOR UC JOD								Sept. 02	0315	3.2a	Sc	ms	18	9
0419 0419 0416	501 (23) 20	TK NAG NAG														
	Max. UT 0128.5 0128.6 0128.7 0130 0127.9 0950 0947 1001 2022 2017.9 2023.6 2213 2213 2213 2213 2213 2213 2213 22	Max. Peak UT Flux 0128.5 1689 0128.6 (550)	Max. Peak UT Fiux Obs. Fiux Obs. Provided Provi	Max.	Max. Peak UT Flux Obs. Gr. Day UT Comparison Compar	Max. Peak Obs. Gr. Onset Rise to Day Out Peak UT Flux Obs. Gr. Onset Rise to UT Peak Aug. O9 1600 10h 0128.5 1689 TK 0128.6 (550) NAG > 196 SYD 0128.7 (175) NAG 0130 77 SYD 0127.9 1200 NBS 0950 (693) HHI HII 1001 (692) HHI 60 UCL - 30 UC N N N N N N N N N N N N N N N N N N	Max.	Max. Peak Obs. Gr. Onset Rue to Dur. Peak Int.	Max. Peak Obs. Gr. Onset Rise to Dur. Peak Obs.	Max. Peak Obs. Gr. Onset Rise to Dur. Peak Obs.	Max. Peak Ole. Day Onset Rise to Dur. Peak Ols. Gr. Day	Max. Peak Olbr. Gr. Olbr. Tree to Dur. Peak Olbr. Dur. Peak Olbr. Dur. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Dur. Peak Olbr. Olb	Max. Peak Ols. Gr. Olist Rise to Dur. Peak Ols. Gr. Dur.	Mag. Peak Olsr. Cgr. Onast Rise to Dur. Peak Obs. Cgr. Oss. Type	Max. Peak Ois. Gr. Ous. Gr. Ous. Car. Ous. Car. Ous. Oi	Mart Peak Othe Cr. Say Othe Cr. Say Cr. Cr. Cr. Say Cr.

given for event No. 132. No dynamic spectrum observations exist at the time of the large 10 cm, burst at 0949 UT. Large bursts, of relatively short duration, are reported throughout the entire spectrum range covered by the single frequency observations. ly also to that and no of the le fre-onsists curred

136. This is one of the few great geomagnetic storms for which the 3-hourly Kp value reaches 9. Seven of the 18 stations rate this as a severe storm.

137. The plage and spot data for this event are similar to that

at meter wavelengms at the time of the Type in burst at 0423 UT. In the dynamic spectrum, Sydney also reports a Type III noise storm, and bursts of unclassified activity, in progress throughout the day.

	Type I		MIC SPECTR			 			200	C/S DAT			+		
Event No.	Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur, Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s		Beg UT
120															
121	C0127.5- 0128.5/3	g0127.5/1 G0128/2 g0129- 0131/1 g0131- 0132/1	*0129- 0134/3		н	330- 100	CD	0129.5	5.5			тк	9500 2000 1420 1000 600 167	CD SD CD CD CD	0126 0127 0128 0129 0129
22															
23															
25				* (0930-	нк		CD	0917	88	0945	100	SIM	9400	CD	091
				1045/3)			SD	0930	75		•••	N	2000 1500 600 600 600 545	CD CD SD MD SD SD	0910 0900 0914 0921 0942
26	1 2019- >2400/3	G2018- 2021/2- G2022- 2023/3 G2023- 2026/3	*2022- 2026/3		<u>H</u> ,M	330- 100	CD	2022	5	2024.5	>450	С	600 450 167	CD CD	2021 2017 2021
27															
28 29															
30	I in progress all day	g2211/3 G2213-	*2214- .2217/3		н	300- 100	CA	2205	9.5	2206	1120	HIR	9500	С	2212
	an ony	2216/3 g2219/1 G2223- 2225/1 b2235/2	. 2217/3	* 2212- 2243/3	н	580- 100							2000 1000 600 450 450 167	CD CD-F CD CD CD CD CD	2210 2211 2214 2211 2220 2213 2223
31															
132	I in progress all day	g1306- 1307/3 b1309/3 G1341- 1343/3 G1346- 1348/3 G1349- 1351/3 g1352/3 g1354/3 g1356/3		*1301- >1600/3	<u>н</u> ,м	580- 100	CD	1303 1321	13 84	1312 1350	>1200	<u>c</u> ,n	9400 2000 600 545 450 169 169 80	CD CA CA CA CA CA CA CA SA CD CD	1302 1258 1300 1259 1300 1303 1342 1250 1300
33 34							CD	0238.5	0.5	0000 1	1500				
							CA CA	0238.5	0.7 2.7	0239.1 0243	1500 2400	TK TK	9500 9500 9500 9500 3750 2000 1420 1000	ECD SED SED CD SED CD SED CD	0203 0232 0238 0241 0203 0203 0204 0203
35							CD	0949	6		> 2000	N	9400 600 545 206 169 80	CD CA CD F CA SD	0948 0950 0949 0949 0950 0945
36	I 0345- ≶0616/2	g0410- 0410,8/3 G0415/2 G0416.5- 0417.5/2 b0419/2	*0423- 0431/2		S								9500 2000 1000	CD CD	0412 0410 0408

132. This is a very great solar eventon August 31st at 1257 UT., which occurred in a very remarkable plage. Region 4124 is an extremely large, very bright, and tremendously active plage which consists mainly of the merging of two plages from the previous rotation - plage 4083 at N23, and plage 4084 at N12. There are two complex Ay spots contained within the plage The Ayspot No. 12580 is one of the largest spots of the year - area equal to 1700 millionths of the hemisphere (Mt. Wilson data), and is a return of the spot No. 12516 in region 4083. This latter region was

responsible for seven events in this catalogure - Nos. 112, 113, 114, 115, 117, 118, and 121. Region 4124 is responsible for eleven events - Nos. 132, 133, 134, 135, 136, 137, 140, 141, 142, 143, and 144. The 10 cm. event consists of a very great burst, preceded by a precursor, and followed by a very long-enduring post-burst increase in flux. The strong Type IV radio emission, reported by Pt. Davis as in progress at 1301 UT., was observed over the entire observable frequency range of 580 - 100 Mc. Observations of this event, also made by Michigan, indicate that the Type IV burst began at 1258 UT. Pt. Davis remarks that "the Type IV changes gradully into noise storm activity." At meter

wavelengths, the radio event consists of a very gree + burst, for which the second part consists of a la and fall in flux. A stimilar type of event evider occurred at the other single radio frequencies.

134. The plage and spot data for this event are similar given for event No. 132. No 10 cm. observations dynamic spectrum observations, exist at the time large SWF on September 1st at 0204 UT. The sing quency observations indicate that the radio event of a strong burst of relatively-short duration which of simultaneously with the start of the SWF.

			GE DAT		M-	Age in	ldent.	MT.W.	CMP	Mea	n	H	When	Area	MT.W.
CMP Gr. Day	Mean Long,	Mean Lat.	Int.	Max. Area	No. Flares	Rotations	ident.	Туре	Gr. Day	La			Seen		No.
							ì								
							ļ								
							1								
							l								
							ł								
							}								
							1								
							ļ								
										2					
Sep 10.5	t. 5 201	S 12	2.5	2,70	10) 3	4099	dβpl	1	Sept. 10.5	S 14	18	7-16		1260
10.6	207	N12	3.5	9,00	39	2	4098 and 4100	* 187L	1	0.8	N11	26	3-17		12596
17.	0 115	~ NIt	3	4,80	0 ′	7 5	4112	lapl	1	7.2	N15	15	10-23		12613
								1							
								ļ							

pectrum observations irst on September 3rd is reported at meter

mber 3rd at 1412 UT. o that given for event of a very large burst, irst increase. In the

Type II or Type IV events with the large flare and SWF.

the single frequency observations.

143. This is one of the relatively rare great geomagnetic storms for which the 3-hr. Kp value reaches a maximum of 9. Four of the 18 stations indicate a second sudden commencement on 6th at 1122 UT.
 144. The plage and spot data for this event are similar to that

\dashv	Type I		C SPECTRUM		Ohi		Time			/S DATA		Ohe	1		Pos
vent No.	Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg UT
38	I in progress s all day	g1259.2- 1259.7/w g1300.1/w g1301.4/w g1313/w g1314.9/w			М	BC ABC BC B BC	-	1310	60		(250)	N	9400 2980 1500 600 600 545 545 450 221 178 169 169	SD CD CD CA SA CD CA SA CD CA	1255 1257 1246 1258 1303 1309 1258 1255 <1241 1300 1241 1311 1331
40	C0041- 0042/1 C0043- 0044/1	G0039- 0040/2	*0036- 0041/3		н	580- 100	CD	0038	12	0039	420	тк	9500 2000 1420 1000 600 545 167	CD CD ECD CD ECD CD	< 0039 0028 0036 0034 0037 0038
.41													9400 1500 600 545 169	SD CD ECD CD SA	1020 1022 1025 1025 1023
142	I in progress s all day C1424- 1428/1 C1455- 1456/3	g1424- 1425/2 b1437/1- g1455/3			н		CD CD	1411 1422	6 15	1427		c c	9400 1500 600 545 450 169	SD SD CD CD CD SA	1415 1420 1424 1423 1424
144							CD	0812	7.5	0818	800	OSL	9500 2000 1500 1000 600 169	CD ESD SD ECD CD SD	0812 0811 0811 0813 0814
45	C1628- 1629/1 Ig1632- 1638/3 I (weak) in s progress all day	g1628/1+ g1630/1- b1634/2 b1635/3	1632- 1638/3		<u>н</u> ,м	190- 100	CD CD	1627.5 1630.5	1.5 2		120 150	N N	167	CD	< 1634
46		b0213/1 b0246/1			S								9500 3750 2000	SD CD CD	022 022 022
47	l (weak) in progress all day	g0141/3 b0142/2	0150- 0200,5/2		s								9500 3750 2000	SD SD CD	014 014 014
48	I 0330- ⁹ 0715/2	b0217- 0219/2 g0220/2 b0221/1 b0239/1 g0302/3	0259- 0310/2	0305- 0722/3	s		CD CA	0300 0326	25 120	0308 0405	520 4000	TK TK	9500 3750 2000 1420 1000 600 545 545	CA CA CA CA CA CD CD	024 024 024 024 023 021 021
149	g0220/1 b0223/1 i 0319- \$0712/1	ъ0228/2			s								9500 3750 1420 1000 600	CD CD CD CD CD	021 021 022 022 022
50	$\mathbf{I}_{\mathbf{S}}$ in progress	g0709/2 g0711- 0713/2 G0715- 0716/1	0712- 0721/2		s		CD	0709	6		>1100	N	9500 2000 1500 1000 600 545 169	ECD CD CD CD CA CD CA	070 070 070 070 070 070 070

146. The large flare on September 10th at 0223 UT. occurs in a The large flare on September 10th at 0223 UT, occurs in a very large, very bright, and active plage which contains a complex β_Y spot. The flare seems to be correlated with a solar event which is confined to the higher radio frequencies. Only very minor Type III bursts are reported in the dynamic spectrum, and no distinctive event is reported at meter wavelengths or at the low and intermediate frequencies. The SWF listed here is taken from the unpublished CRPL "Check-list".

147. This Type II burst on September 11th at 0150 UT, is associated with minor flare activity in a region which is

situated at the east limb of the sun. The plage (4148) is a return of region 4112, which was described in note No. 124. The \$\triangle\$ psot No. 12563 in region 4112, which is a return of the \$\triangle\$ psot No. 12503 in region 4112, which is a return of the \$\triangle\$ psot No. 12503 in region 4075. In addition to the Type II burst, Sydney also reports a group of unclassified bursts between 0141 and 0146 UT. No distinctive event is reported at meter wavelengths at the time of the Type II burst. At the higher frequencies, the radio event consists of a minor burst of very short duration. The SWF is taken from the unpublished "check-list."

	_	PLA	GE DAT	`A						SUNSPO	T DATA			
CMP Gr. Day		Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat.	Н	When Seen	Area	MT.W. No.
Sept. 07.5	240	S 25	3	2,600	13	1	NEW	dpl	Sept, 06,8	S 24	20	4-12		12597
11.5	188	S17	2.5	3.000	44	1	NEW	dβL	11.4	S17	26	8-17		12606
														·
20.5	69~	N11	3.5	6,000	55	2	4114	LBpl. • dB TL	20.2 21.3	N09 N10	30 31	13-25 20-27		12623 12634
19	89	N19	3.5	7.800	83	5	4112	•dBrl	19.3	N23	36	13-26	2200	12622
20.0	75	S 20	2.5	3,600	15	1	NEW	dBl dBpL	19.3 20.0	S 23 S 22	17 14	20-25 17-25	1400	1 2 633 12630
								[
e spectrum, the	single		14th at	0204 UT.	No distir	active even	is report	ed at meter	which sweeps wavelengths, i	n an inti	the fre	quencies, ibout 4 min	from em. utes, and c	to meter liminish-
a burst of y at all freque	ncies,	157.	with a	rge SWF on flare in a lar	ge, brig	ht, and activ	e region b	ocated near 159.	ing in duration The plage and	spot d:	ita for t	his event	are simil:	ir to that
are similar t on Septembe equency range ons indicate the urst, for whi	r 13th 580 - nat the		exist a at mete duration	t limb of the t the time of a wavelengt or occurs si	the SWF hs, and multane	. No distine a large mic ously at th	tive event rowave bu e higher f	servations is reported rstof short requencies.	given for event at 2249 UT, is plage (4134), w limb of the sur over a frequen	No. 146 associa thich has t. The Ty cy range	i. The Ty ted with i now re; pe Hbur of 220 -	pe II burst an average ached a pos st was obs 100 Mc. As	on Septen flare in the sition near erved by 1 s in Event	nber 16th he active the west Ft. Davis No. 159.
are similar ctrum observ SWF on Sept	to that	158.	given f at 204 range	age and spo or event No. 5 UT. was of 250 - 100 cate that th	146. Th observed Mc. The	e Type II bu i by Ft, D: single rac	rst on Sept avis over : lio observ;	ember 15th a frequency itions seem	the single freevent consists frequencies, frequencies, frequencies frequencies frequencies from the constant of the constant o	quency of a more rom cm.	observat odest bu: -to-mete	tions indic rst which : r wavelen	ate that t sweeps the zths, in an	he radio ough the interval

Ī			FL.	ARE DA	TA			-	SHOR	T-WA	VE RAD	IO FAD	EOU T S			10 C	M. EVE	NTS		
Event	Gr.	Beg.	End	Max.		Pos	ition	No, of			Beg.			No. of Obs.	Type	Beg.	Dur.	Max. UT	Peak	McM.
No.	Day	UT	UT ———	UT				Obs.			UT	Min.	Index	Obs.		UT	Min.	01	Flux	Plage No
152	Sept.: 12	1510	1638	1516	2	N11	W 18	8(6c)	s	2+	1513	39	5	12	*2	1514.3	18	1515.3	850	*4134
153	12	2145	2222	2150	1	S17	W 76	2(2c)	SL	2-	2142	43	5	10	6 2	2145 2200	15 3	2153.8 2201.8	105 20	4136
154	13	0602	0707	0609 0623	1	S16	W24	5(1c)	SL	1	0603	24	4	3	*6	0622	4		618	*4141
155	13	1410	1508	1422	1+	N09	W32	7(5c)	S	3-	1416	34	5	9	3 2	1347.5 1414.5	95 13	1429 1418	24 235	•4134
156	14	<u>0226</u>	0303	0238	2	N1 1	W 39	3(2c)	* S	3	0204	51	5	5	СБ	0227	17	0237	400	*4134
157	15	0333	0418	0337	2	N07	E69	3(1c)	*s	3	0327	83	5	6	*SD	0332.5	7	0334	830	•4152
158	15	2030	2110	2042	1+	N11	W64	4(4c)	s	2-	2040	26	5	9	2 4	2040.5 2045.5	5 35	2041.8	365 35	•4134
159	16	2242	2310	2245	1	N11	W77	3(3c)	s	2-	2244	24	5	5	2 4	2243.6 2248.8	5 >15	2245	425 25	*4134
160	18	*1303 *1425	1600	1325 1530	3	N23 N20		9(5c) 9(5c)	SI. SL	3 - 3 -	1245 1420	190 190	5 5	10 10	3 2	1258 1333	230 1.5	1330 1333.5	34 9	*4151
161	18	*1722 *1815	<u>2110</u>	1740 1840	3+ 3+	N23 N20	E08 E03	6(6c) 6(6c)	*s *s	3+ 3+	1730 1823	150 150	5 5	10 10	3 6	1805 1820.5	190 40	- 1824.7	92 275	*4151
162	19	*0350	0555	0410	3	N23	E02	5(2c)	*SL	3	0359	54	5	4	*CD	0401	10	0406	1410	+415:
163 164	20 20	0529	0552	0533	1	N23	W13	ı	s	1	0532	10	1	1	*CD	0537	11	0539	509	415 *415

1 1 152. The plage and spot data for this event are similar to that given for event No. 146. The large 10 cm, burst on September 12th at 1514 UT, is accompanied by Type II and Type IV bursts which covered the entire observable frequency range of 580 - 100 Mc, At meter wavelengths, the radio event consists of a great burst which is followed by a great rise and fall in flux. The other single frequency reports indicate that a similar kind of major + burst occurred, At the intermediate frequencies, the "second part" consisted of a noise storm.

153. These Type II and Type IV dynamic spectrum events on September 12th at 2150 UT, are associated with flare activity in a region near the west limb of the sun. Plage 4136 is a new region - both the plage and its related βspot appeared on the disk on September 4, when the region was in the east. The Type II burst was reported by both Ft. Davis and Michigan, but only Michigan reports the Type IV emission, on their Chand only, and degenerating into weak noise storm activity. At meter wavelengths and at other single radio frequencies, the radio event consists of a minor burst of short duration.

154a. This very great geomagnetic storm is one of the few storms for which the 3-br. Kp value reaches a maximum of 9.

154b. This large 10 cm. burst on September 13th at 0622 UT. is not associated with any other very major solar activity. The related flare occurred in an active plage which developed on the disk as a new plage of September 6, and in which a spot

appeared on September 8. In the dyna response evidently was a weak infrequency observations indicate t duration occurred almost simultaneous

155. The plage and spot data for this editive for event No. 146. The Type IV et at 1419 UT, was observed over the 400 Mc. The single frequency observation event consists of a major "second part" is a rise and fall in fl

156. The plage ans spot data for this egiven for event No. 146. No dynamic were being made at the time of the la

RADIO	DATA				PO	LAK CAF	ABSOF	RPTION					GEOM	IAGNETI	C STORM	s	
Dur. Min.	Max. UT	Peak Obs Flux			Onset UT	Rise to Peak	Dur.	Peak Int.	Obs.		Gr. Day	Beg. UT		Туре	Int.	No. Sta. Rep.	Max. Kp
41 45 142 4 153 1.5 60 435 62 100 18 44 100	1302 1329 1317 1317	(333) HHI 429 N (304) HHI <150 UC 102 UC 170 N 35 N 360 NBS 700 AOP (400) CAV > 545 UC (1300) CAV	s	Sept. 22	1700		46	58	B,L,H								
>10 22 14 8 10 1.5 1.8	0044.3 0039 0040 0041 0037	1238 TK (57) NAG 175 SYD 534 NAG 106 SYD >300 N(H) >4500 NBS															
51 28 3 2 0.6	1026 1026 1027	(>500) HHI (274) HHI 103 MOS 400 N >72 UC															
82 80 19 9 > 7 8	1423 1425 1428	(>515) HHI (509) HHI 198 UC 240 N 400 NBS 33 UC									Sept.	1300					
2.8 4.5 43 9 9	0812.5 0813 0812 0814	>1355 TK (800) NAG (571) HHI (805) NAG 60 UC >75 UC	- 1			•					04	1300	2.5d	Sc	s	18	9
2.3	1635	980 NBS															
5 35 35	0228 0228 0228	481 TK (36) NAG (15) NAG															
1 1 1.5	0141.5 0141.4 0141.4	453 TK (18) NAG 20 NAG															
130 90 70 66 70 124 12.5 53	0305 0304 0304 0304 0320	584 TK (373) NAG (564) NAG 604 SYD (8200) NAG 10000 SYD 180 >30000 N(H)															
5 2.5 0.6 2 0.7	0221 0221.4 0221.4 0221.8	526 TK (102) NAG 127 SYD (27) NAG 92 SYD	,						/								
6 6 10 7 3 11 2	0709 0709 0709 0709	697 TK (88) NAG (191) HHI (79) NAG 180 UC >300 N >120 >120 UC	ŀ														
: 0244 L lar to the lar to the lar to the first first 151, it ents liss UT do rently a ydney a . At me- rge ma val of ve frequen	hat ine 52, 149, ted not re- lso ter jor ery	events indicate a cntire range of fi No flare observe large 10 cm, bu fore plage and s not available. To duration, and is burst in the dy short duration it by the single ra- event is reporte-	t large rise an equencies. ations were bei rst on Septempot data in ass he large 10 c associated whamic spectrum proughout the radio frequency of	ng mader 12th octation m. bursith only m, and sange of fobservat	e at the at 0220 with the string a mode with buildings. N	e time of UT., the his event of very sh dest Type ersts of v cies cove	the re- are ort III ery red ive 15	50. The give at (larg sim rang ser'	L,H In the unpublished plage and spot on for event No. 1 V712 UT. is asso te radio burst o ultaneously at a ge of frequencie vations. S PCA event is: s not appear in B:	data for thi 46. The Type ciated with, f short dur: 11 waveleng s covere	s event Eliburst but predation wh this, thr	are sim on Septe ceded in ich occi oughout e single	ember l time by ars alm the end radio	.2th y, a lost tire ob-			

2. VIII-7R 3

-		DYNAMIC	SPECTRUM	DATA						SDATA		Obe	Free	Tuna	Beg.
vent No.	Type I Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc.s	Туре	UT
152	I 1515- \$2400/3	G1515- 1516/3 g1518- 1521/3	*1516 1528/3+	* 1515- 2025/3	н,м	580- 100	CD CD	1515 1522	7 125	1519 1528	>800 10	C,N	9400 1500 600 600 545 450 169	CD CD ECA - CD ECD CA	1514 1515 1514 1516 1515 1515 1514 1517
153	1 2202- 82345/1-	g2147- 2149/1 g2151/1	*2150- 2153/3	* 2153- 2203/1-	н, <u>м</u>	300- 100	CD	2151	2		>150	N	9500 2000 1420 1000 600 545 167	CD SD CD CD CD CD	2146 < 2154 2154 < 2154 2149 2148 2153
154	I 0615- \$0634/1				s		CA	0610	<u>50</u>	0700	570	тк	9500 2000 1420 1000 600 545 169 169	ECD SD ECD CD CD ECA	0623 0622 0623 0622 0623 0622 0624
155	C1417- 1419/3	g1409- 1410/1- g1415- 1417/1 g1417- 1419/3		* 1419- 1606/3	н, <u>м</u>	580- 400	CD	1417.5	1.5	1418	225	OSL	9400 1500 600 600 545 545 169 169	CD CD ECD - CD - ECA	1415 1415 1416 1414 1416 1417 1420
156													9500 2000 1000 545	CD CD CD	022 022 022 022
157	:												9500 2000	ECD SD	033 033
158	I (weak) in progress all day	g2039- 2040/1 g2041/3	*2045 <i>-</i> 2049/3		н,м	250- 100	CD	2043	2		>150	N	450 167	ECD	204 204
159	I in progress all day	g2244- 2245/1 b2253/1	*2249- 2254/3		н,м	220- 100	CD	2245	1.5		>180	N(H)	9500 2000 1420 1000 600 545 545	ECD ESD SD ESD CD CD	224 224 224 224 224 224 224
160	C<1315- 1521, 1 I <1315- s 1711/2 Also I (weak) in progress all day				<u>н</u> ,м		ESD ECD	1333 1437	0.6 60		>500	N,C C	600 450	CA CA	14 <13
161	I (weak) in s in progress	g1741/3 G1835/1		* 1810- >0028/3	Ħ,M	580- 100	CD	1740 1808	0.8 >293	1827	356	c c	545 450 450 450 167	CD -	18 18 19 19
162	I (weak) in progress all day g0411/2 g0413/3 g0450/2 1 0500- s0702/3	III. ail day III. 80546- 80634/3		* 0427- 0730/3	S		CA CD	0308 0411.5	150 1.5	0510 0411.8	580 1420	TK TK	9500 2000 1420 1000 600 545	CD F CD	03 04 04 04 04
163 164	I in progress all day	III all day III 50544- \$0624/2			s								9500 3750 2000 169	SD CD	05 05 05

160. This major flare on September 18th at 1300 UT, is one of those rare great optical flares which shows a "double aspect" as it spreads within the plage. This "doubling" appears also in the SWF and in the radio event at meter wavelengths. The flare occurred in a large, very bright, and very active plage which was in its fifth rotation, and which is responsible for five events in this catalogue - Nos. 160, 161, 162, 164, and 166. This active region (4151) is a return of the plage described in note No. 124. The complex Bysoot No. 12622 is the largest spot observed during the year area equal to 2200 millionths of the hemisphere (Mt. Wilson data). The only effect of the flare at radio frequencies seems to be in the form of noise and a rise base level, as shown most clearly in the dynamic spectrum observations. The single frequency observations (at both cm. and meter wave-

lengths) indicate that the radio event consists of a very minor burst (which seems to be associated with the first phase of the flare) and a rise and fall in flux, with noise, (which seems to be related to the later aspect of the flare).

161. The unusual plage described above in hote No. 160 experiences another great flare only a few hours after the preceding event. This second great flare on September 18th at 1722 UT, also has a "double" aspect as the flare spreads within the plage. The plage and spot data are similar to that given for event No. 160. This flare also has a similar response in the SWF, and at radio frequencies, but to a much greater degree. Instead of only continuum emission, as in event No. 160. Pt. Davis now reports strong Type IV emission, observed over a frequency range of 580 - 100 Mc.

The 10 cm, event consists of a large burst long-enduring rise and fall in flux, at meter event is a minor burst (associated with the flare), followed by a very large and long base level (associated with the later aspect.)

162. This is another major optical and radio eve 19th at 0350 UT., in the same plage which for events No. 160 and 161. This unusual rienced three of these great events within a pe The single frequency observations indicat event consists of a microwave burst, of 10 cm., which progresses slowly through from high to low frequencies, in a period of a with decreasing intensity and duration.

2. VIII - 8R

		PLA	GE DAT	ra						SUNSPO	DATA			
CMP Gr. Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotation	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat.	н	When Seen	Area	MT.W No.
Oct. 01.0	290°	N17	3.5	6,000	19	2	4145	IBPL	Sept 30.8	N16	30	23-6		12648
Sept. 28.0		N20	3	19,000	63	4,3	4124	*lbrl	27.2 27.4	N14 N19	25 30	20-2 20-2 22-2		12635 12636
								Lapl dppd lbd dbL	27.8 28.7 28.9	N24 N11 N25	25 30 26 20 13	22-2 22-2 25-4		12636 12642 12644 12652
						1								
Oct. 07.5	204°	N14	2.5	7,500	30	3	4134	dBL	Oct 7.9	N14	16	6-12		12676
						ţ.								
08	198°	S 40	3	5,200	17	1	NEW	dβfd	8.2	S 40	11	1-12		12669
14.5	112°	N23	2	2,500	14	6	4148	dßpl	14.5		10	12-19		1269
17.5	59°	N10	2.5	8,500	26	3	4152	d₿d	16.4	N09	13	10-18		12687
11.0	158°	N18	3.5	5,000	14	3 .	4132	lßpl	11,1	N19	28	4-16		12675
17.5	73°	S 25	3.5	18,000	92	2	4155	e eff Lal LBPd	18,4	S 25 S 29 S 23	29 17 15	10-24 12-24 12-19	1500	12689 12694 12696
									23.0			3 - 4		

ing storm is still in and no events at any of the single radio frequencies.

24th at 0212 UT, is t the east limb of the e dynamic spectrum very real event took nd no event at meter of the Type II burst, CRPL "check-list."

t are similar to that st on September 24th it optical flare at the No other related ac-VF, no 10 cm. event, 173. This major flare on September 26th at 1907 UT., occurred in an extremely large, bright, and very active plage. This region (4159) is a return of the lactive region 4124, described in note No. 132, which was responsible for eleven major events in this catalogue during its disk passage of which two (and possibly three) were PCA events. Region 4159 is responsible for 5 events in this catalogue - Nos. 173, 174, 175, 176, and 177 - one of which is a PCA event. The αp spot No. 12636 is a return of the $\beta \gamma$ spot No. 12581 in region 4124. The βp spot No. 12642 is located in the same position, but is not a return, of the $\beta \gamma$ spot No. 12580 in region 4124. The 10 cm. event donsits of a modest but lengthy burst superposed on a very long-enduring rise and fall in flux, which began about 50 minutes earlier. The strong

Type IV radio emission, which started at 1927 UT, at the same time as the 10 cm, burst, was observed by Ft. Davis over the entire observable frequency range of 580 - 100 Mc. Ft. Davis remarks that the Type IV burst "changes gradually into noise storm activity." At meter wavelengths, the radio event consists of a very great complex burst, followed by a great rise in base level.

176. The plage and spot data for this event are similar to that given for event No. 173. The major flare on September 30th at 1657 UT., and large SWF, are not associated with any other major activity. Only a small Type III burst is reported in the dynamic spectrum, and a minor burst at meter wavelengths. The 10 cm, event consists of several modest bursts superposed on a rise and fall in flux. No events at any other single radio frequencies are reported at the time of the large flare.

			FI	ARE D	ATE				SHO	RT-W	AVE RA	DIO FA	DECUT	S		10 CI	M. EVEN	TS		
Event No.	Gr. Day	Beg. UT	End UT	Max. UT	Imp.	Posit	ion	No. of Obs.	Type	Imp.	Beg. UT	Dur. Min.	Wide Spread Index	No. of Obs.	Type	Beg. UT	Dur. Min.	Max. UT	Peak Flux	McM. Plage No
165	Sept. 20	2117	2222	2123	2	N07	W14	4(4c)	s	1+	2120	21	5	10	6 4	2119 2127	8 >80	2120.5	185 18	*4152
166	21	0415	0456	0422	2	N23	w23	4(1c)	*SL	3	0410	32	5	4	CD	0403	25	0406	420	*4151
167	21														İ					
168	21	* <u>1330</u>	<u>1510</u>	1335	3	N10	w 06	11(4c)	sL	3-	1330	60	5	9	*6 4	1330 1344.5	14.5 25	1337	785 15	*4152
169	21																			
170	22										0015	140	,	,						4162
171	24	0224	0307	0227	1-	N15	E91	1(1c)	SL	2+	0217	143	1	1						
172	24	<u>0507</u>	0522	0513	1+	N15	E90	2(2c)												4162
173	26	*1907	2202	1952	3	N22	E15	6(5c)	s	2+	1925	100	5	5	3 6	1836 1927.	>240 8 60	1938.	57 5 67	*4159
174	26																			
175	29							- (4)	İ			40				1658	70	1710	30	*4159
176	30 Oct.	*1657	1750	1706	3	N25	W37	5(4c)	*8	3	1700	40	5	9	3 1 6 2	1658 1659. 1705.	1 5 6	1658. 1701. 1706.	4 18 5 77	
177	03									_					1	0000		0234	800	*4172
178	08	0231	0258	0240	2	N17	W 05	2(1c)	SL	2-	0230	24	1 5	3	*ESD	0233.	5 7.5	0234	800	
179	09	0340	0438	0355	2	S 38	W14	3(1c)	SL	. 1+	0340	44	1 5	4	CD	0342	27	0347	382	4173
180	10	1630	1731	1648	1+	N25	E38	2(20)	*si	. 3	1607	123	3 5	8	2	1608		5 1609		418:
181	13	0534	0641	0539			E40	3(1c)	s	1	0541	25	5 1	1	1 *CD	1618 0535			.2 7 .5 800	4186
182	14														1					
183	15								s	1+	2150	1:	2 5	8	*2	2150	>10	2152	2.7 1000	
134	16	0144	0155		1	N22	W 56	1	s	2+	0150				•ECI	0142	39	0142	523	417
185	16	*0152	0202	0152	3	S 25	E21	ì	s	2+	0150	2	0 5	7						*418
186	18	0816	1022	0820	1	S 24	W04	7(3c)	*s	3	0820	2	0 1	1	*2	0818	12		544	+418
	The place																			<u> </u>

165. The plage and spot data for this event are similar to that given for event No. 157. The Type II burst on September 20th at 2121 UT, was observed by Ft. Davis over a frequency range of 330 - 100 Mc. The single radio observations indicate that the radio event, at meter wavelengths and the intermediate frequencies, consists of a major burst of short duration.

166. The plage and spot data for this event are similar to that given for event No. 160. No dynamic spectrum observations exist at the time of large SWF on September 21st at 0410 UT. Only a minor burst is reported at meter wavelengths,

167. Seven of these 17 stations rate this storm as a severe one, Four stations continue the storm for three more days, running it through the period of the next storm (event No. 170).

168. The plage and spot data for this event are similar to that given for event No. 157. The major flare on September 21st at 1330 UT, began earlier as a minor brightening of importance 1-, at 1227 UT. The large 10 cm, event consists of a very large burst followed by a modest post-burst increase. The brief interval of Type IV radio emission (15 minutes) was observed by Fort Davis over a frequency range of 300 - 100 Mc. At meter wavelengths, the radio event consists of a very great burst, superposed on a rise in flux, which began earlier, at 1230 UT., as the onset of a noise storm with a rise in base level.

170. This storm begins while the preprogress, but is diminishing.

171. The Type II burst on Septemb associated with a minor optical flar sun. However, the large SWF, and response at 40 - 240 Mc, indicate the place on the sun. No. 10 cm, even wavelengths, are reported at the to The SWF is taken from the unpublis

172. The plage and spot data for this given for event No. 171. The Type II at 0504 UT. is associated with a m east limb, similar to event No. 1 tivity is reported - there is no known.

R RADI	O DATA				POI	AR CAP AE	SORPTIO	N					GEOMA	GNETIC	STORMS		
Dur. Min.	Max. UT	Peak Flux	Obs.	Gr. Day	Onset UT	Rise to Peak	Dur.	Peak Int.	Obs,		Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
11 28.5 2 164 220 315 2.5 63	1516 1516 1528	(1150) (627) > 210 >> 430 > 5000 > 7500 > 270 > 270	HHI HHI UC N NBS UC							: :							
10 >7 1.5 >6 7.5 3 142	2154 2154 2154 2154 2150 2321	860 (86) 278 (195) 178 150 320	TK NAG SYD NAG SYD N NBS							:							
2.8 3 2.5 3 1.8 2.5 1.5 3	0623.5 0622.4 0623 0622.6 0624	813 (290) 224 209 191 450 110 120	TK NAG SYD NAG SYD N								Sept. 13	0047	2.2d	Sc	S	18	9
35 40 3 117 4 110 3 8 36	1418 1420	(542) (266) 150) > 510 240; > 5500 > 120; 72 23	HHI HHI UC N														!
>30 17 14 1.5	0228 0228 0227	706 (28) 14 45	TK NAG NAG N														
5.8 5	0333 0335	1066 (111)	TK NAG							1							
15 2.5	2042 2045.9	800 3000	NBS NBS														
17 3 10 6 >5 1	2244.5 2245 2245 2246 2246	1030 (320) 198 (145) 86 >300 30	TK NAG SYD NAG SYD N														:
32 258	1440	45 140	UC NBS														:
50 63 20 •315 •390	1823 1915 1947 2100	980 2000 220 2000	N NBS NBS														
> 50 8 7 11 2 4	0405 0406 0406 0409 0408	>1350 (254) 193 305 131 90	TK NAG SYD NAG SYD N														
9 6 8 300	0539 0539 0539	643 (200) (23)	TK NAG NAG UC	this burst is s	unernosed	On : lenothy	rise	0547	0554, and	0558 UT	No disti	nctive s	vent is	reported			
velength	ns the	and fall	in flux.		_po-poed				ter wavelen								

perposed on a velengths the first phase of turing rise in of the flare).

on September s responsible on has exper-1 of 24 hours, hat the radio at intensity at frequencies, t 10 minutes, meter wave163. This region is similar to the plage described in note No. 65. The plage is new, and appeared on the disk when the region was about 3 days east of the central meridian. The \(\tilde{P}\) spot No. 12633 is one of the largest spots of the year - area equal to 1400 millionths of the hemisphere (Mt. Wilson data).

164. The plage and spot data for this event are similar to that given for event No. 160. The large 10 cm. burst on Sept. 20th at 0537 UT, is not associated with any other major solar activity. In the dynamic spectrum, in addition to the Type III noise storm, Sydney also reports unclassified bursts at 0547, 0554, and 0558 UT. No distinctive event is reported at meter wavelengths at the time of 10 cm. burst. The SWF is taken from the unpublished CRPL "check-list."

		DYNAM	IC SPECTRUM	DATA					200 M	C/S DATA					(
No.	Type I Time/Max. Int.	Type III Time/Int.	TimeI Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Type	Beg. UT
165	C2119- 2125/1 I in progress all day	g2119- 2120/1	*2121- 2123/3		Ħ,M	330- 100	CD	2121.5	3.5		>180	N(H)	9500 545 450 167	ECD CD ECD FD	2119 2121 2119 2120
166							СБ	0446	1.5		90	N(H)	9500 2000	CA SD	0405 0403
167 168	I (weak) in progress all day I 1315- ^S 1746/2	G1330- 1339/3 g1406/3 g1410/3 g1415/3 G1424/1		1330- 1345/3	<u>н</u> ,м	300- 100	E,M CA CA	1230 1306 1308	270 1.5 1410	off-scale 1312- 1321		c c c	9400 1500 600 545 450 450 169	CD CD CD CD - CD	1330 1331 1334 1331 1350 1220
169 170														ECD	1330
171	I in progress all day	b0201/2 G0201- 0204/1 b0204/2 g0204- 0206/1	*0212- 0226/2		S								9500 9500	ESD SD	0204 0238
172	I in progress all day	g0454/1 g0521/1	*0504- 0507/1		s										
173	I 1932- \$2400/3	g1927/2		• 1927- >2015/3	Ħ,M	580- 100	CD	1925 1947	40 >60	1940 2010	>384	c c	450 167 167	CA ECD CA	191: 192: 192:
174 175															
176		g1658/1			<u>H</u> ,M		CD	1657	0.8			с			
177															
178		g0233/2			S		ECD	0232.7	2.5	0233.8	1600	тк	9500 2000 1420 1000 600 545	ECD SD SD CD SD SD SD	023 023 023 023 023 023
179	1 0337- ^S 0400/2	III _S 0337- 0427/1	*0402- 0422/3		s								9500 2000 1420 1000 600 545	CD SD CD SO CD	034 034 034 034 034
180 181	I in progress all day												9500 2000	CD CD	053 053
182 183	I in progress from 1844 UT	G2152- 2153/3 g2153- 2155/1			<u>н</u> ,м								9500 1420 600 450		215 215 215 215
184		, -											130	200	213
185													9500 2000 1000	ECD CD F	015 015 015
186													9400 1500 600 545	SD CD ECD CD	081 081 081

- 177. This minor storm was reported by only two stations. However, the change in the 3-hour Kp's is quite definite.
- 178. This strong 10 cm. burst on October 8th at 0233 UT. is associated with flare activity in a large and fairly active plage (4172), which is the return of the very active region (4134) described in notes No. 146 and 148. This region (4172) is not important as a source of great activity, except for this single microwave burst. In the dynamic spectrum, in addition to the Type III burst, Sydney also reports an unclassified burst at 0232.5 0236 UT.
- 179. The Type II burst on October 9th at 0402 UT, is associated with flare activity in a new plage located near the center of the solar disk. No distinctive event is reported at meter wavelengths, at the time of the Type II burst.
- 180. No outstanding events in the dynamic spectrum are reported at the time of the large SWF on October 10th at 1607 UT. The 10 cm, event consists of two small bursts, and at meter wavelengths no distinctive event is reported, although a noise storm is in progress. No events are reported at any other single radio frequencies.
- 181. This strong microwave burst on October 13th at 0536 UT, is associated with an important optical flare, but the related activity and radio emission are not very great. No dynamic spectrum observations exist at the time of the 10 cm. burst. At meter wavelengths, no distinctive event is reported.
- 182. Five of the 12 stations which report this storm call it a sudden commencement storm. Four of the stations start the storm earlier, on 13th at 20xx UT.
- 183. No flare observations exist at the time of the burst on October 15th at 2150 UT., therefore pl data for this event are not available. The be incomplete, since it was recorded during the lations. No distinctive event is reported at meter at the time of the 10 cm, burst.
- 184. This large 10 cm. burst on October 16th at 0.142 to be associated with minor flare activity in a the west limb of the sun. There is a very little activity. The SWF given here is in all protapplicable to the next event (No. 185). No dynan event is reported at the time of the large 10 cr no distinctive events are reported at any of frequencies.

		PLA	GE DATA	·						SU	NSPOT	DATA			
CMP Gr. Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day		ean at.	н	When Seen	Area	MT.W. No.
				_											
							ł								
Oct.	400		i 2	2,600	8	4	4158	d p L		Oct. 22.2	NII 4	14	22-27		1271
22.0	13°	NI	. 2	2,000	·	•	4155	υp~			,,,,,	.,	26-21		1211
22.0	13°	N20	5 2	1,400	11	1	NEW	døl		21.8	N25	7	22-27		1271
22.0	1.5	1121	, .	1,400	•••	•	NE.W	op.		21.0		·	46-61		12/1
25.5	327	N2	0 3	12,500	45	5	4159	lßl Ißpl		24.8 25.7	N13 N22	13 17	18-30 19-30		1270 1271
								lppl		25.7	N13	16	22-30		1271
27.5	301	° N1	8 3	6,000	13	3	4162	*dBpl		27.5	N21	22	26-1	1400	1273
							}	Lpp Lpp		27.9 28.7	N14 N12	14 11	22-30 22-1		1271 1272
h at 163	7 110		over the	entire observ	vable fre	dienov *···	ge of 580 - 100 M	p 1	irst was ob	Norvec	hv F*	Dant:	over a f	requesta:	rango
imilar t 18 a ''do	o that uble''		At meter and comp	wavelength dex major	s the rac burst.	dio event c The single	onsists of a larg radio observation relengths, follower	ξe of us wa	1190 - 100 avelengths, eported at (Mc. N and or	o distin Ily mine	ctive ev or burs	ent is rep ts of sho	oorted at i rt duratio	meter in are
er part y great ' long-end	burst, luring		by a ''se of noise	cond part'' at the lower	which co frequenc	nsists most	ly of a long peric irregular intensi	od qu	eported at the lencies. The check-lists.	e SWI	is tak	en fror	n the unp	ublished (CRPL
oincide: le large re. The	burst	192.	No flare	ms" (NERA) observation	s were i	n progress	at the time of the	ne g	he plage and iven for eve t 1304 UT. is	nt No.	185. T	he Type	· II burst o	on Octobe:	r 21st

over a frequency Type IV emission

No flare observations were in progress at the time of the Type II burst on October 20th at 2149 UT., therefore plage and spot data for this event are not available. The Type II

at 1304 UT. is associated with minor flare activity. No SWF is reported at the time of the Type II burst. Only minor

			FI	ARE D	ATA				SHC	RT-W	AVE RA					10 CI	A. EVEN	TS		<u> </u>
Event No.	Gr. Day	Beg. UT	End UT	Max. UT		Posi	tion	No. of Obs.	F		Beg. UT		Wide Spread Index	No. of	Type		Dur. Min.	Max. UT	Peak Flux	McM. Plage No
187	Oct. 19	0406	0415	0410	1	S 28	w20	1	s	1	0406	24	3	2	*ESD	0405	7	0406	700	*4189
188	20								s	2+	0242	38	5	4	*CA	0239	40	0254	1100	
189	20	0938	1120	0942	2	S 25	W32	11(4c)	*s	3	0945	15	4	3	CD	0938	7	0941	-	*4189
190	20	* <u>1637</u> * <u>1644</u>	1644 1804	1642 1647	3+ 3+	S 26 S 26	W45 W35	2(2c) 2(2c)	*s	3+	1639	156	5	12	9 *6	1636 1644	8 51	1650.8	12 4000	*4189
									:						4	1735	195		68	
191	20																			
192	20								s	1	2136	12	1	1	2	2145	>5	2145.8	230	
193	21	1301	1314	1302	1	S 28	w 50	1(1c)							2 4	1301 1306.5	5.5 20	1301.5	155 8	*4189
]	1300.3	20		Ů	
194	21																			
195	23	2222	2236		1	S18	W 79	1(1c)												*4189
196	24	2314	2326	2319	1-	N15	W42	1(1c)	s	1	2259	9	5	3						4195
197	24	2329	2406	2340	1-	N27	W44	1(1c)												4194
		İ																		
198	25																			*4197
199	26								s	2	0135	20	5	3	*CD	0138	10	0139	880	
200	27																			4202
201	27																			
202	30														*CD	0037	16	0040	550	

187. The plage and spot data for this event are similar to that given for event No. 185. The strong microwave burst on October 19th at 0405 UT, is similar to the one described in note No. 186, No dynamic spectrum observations exist at the time of the burst, At meter wavelengths, the radio event consists of a minor burst, The single frequency observations indicate that a brief burst progresses from high to low frequencies, diminishing in intensity and duration as it does so.

188. No flare observations exist at the time of the large 10 cm.

burst on October 20th at 0239 UT., therefore plage and spot data for this event are not available. No dynamic spectrum observations exist at the time of the large burst.

89. The plage and spot data for this event are similar to that given for event No. 185. No dynamic spectrum observations exist at the time of the large SWF on October 20th at 0945 UT. The single frequency observations indicate that the radio event consists of a minor burst, of short duration at the low and intermediate frequencies.

This is a very great solar event, on Octobe The plage and spot data for this event given for event No. 185. The great fla aspect, due to the spreading of the flare to plage. The 10 cm. event consists of a preceded by a "precursor," and followed post-burst increase. Note that the precursor the start of the flare, and the start coincides with the time of spreading of type II burst was observed by Ft. Davi range of 350 - 100 Mc., and the strong

R RADIC	DATA			 	PO	LAR CAP	ABSOI	RPTION		1			GEOMA	GNETIC S	TORMS		
Dur. Min.	Max, UT	Peak Flux	Obs.	 Gr. Day		Rise to Peak	Dur.	Peak Int.	Obs.		Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
36 5.5 7 3.1	2120 2119 2121.3	887 >300 1000 >3500	TK N(H) NBS NBS														
80 4	0420 0405.4	556 (10)	TK NAG								Sept. 21	1005	1 2d	Sc	ms	17	7
67 31 16 10	1336 1336	(1095) (432) 180 200 600	HHI HHI UC N								2.	1003	1.20	St.	,,,,	• /	,
>650 >160 9	1424	160 ¹ 95 > 4000	IRS NBS	Sept. 21	1700) 18h	63	41	<u>в</u> ,г,н		22	1345	3d	Sc	ms	17	9
0.3 1.0	0204.7 0238.5	512 502	TK TK														
> 315 0.8 > 308	2028 1926.8 2200	450 2000 > 4000	NBS NBS	26	210	0 -	24	15	<u>B</u> ,L		29	0016	3.2d	Sc	ms	18	9
											Oct. 03	1019	0.8d	Sc	m	2	5
3 3 3 2.5 1.6 2	0233.8 0234.2 0234 0233.7 0234.8	575 (217) 186 (147) 55 160	TK NAG SYD NAG SYD N(H)														
50 17 11 15 9	0355 0348 0347 0347 0349	499 (43) 148 (24) 58 70	TK NAG SYD NAG SYD N(H)														
13 6	0538 0538.5	538 (49)	TK NAG								14	0440	1d	g	m	12	6
10 3.5 4.2 1	2153 2153 2154 2152.1	>1230 421 316 >5200	TK SYD SYD NBS														
8.5 3 1	0152 0152.8 0152.8	701 92 305	TK NAG NAG														
63 9 1 0.6	0821 0820	(485) (184) 78 75	HHI HHI UC N														

arge 10 cm. age and spot arst itself is unset oscil-

UT, appears region near ther related ability more ic spectrum 1, burst, and of the single This may not be a real flare of importance 3 on October 16th at 0152 UT. Such great flares last much longer than 10 minutes. The event occurred in an exceptionally large, very bright, and very active plage. The β 1 spot No. 12689 is one of the largest spots of the year - area 1500 millionths of the solar hemisphere (Mt. Wilson data) and is possibly a return of β spot No. 12633 in region 4155. No additional 10 cm, events are reported at the time of the flare, other than the event in progress with No. 184, above. No events are reported in the dynamic spectrum, or at meter wavelengths, at the time of the flare. The region in which this flare occurred (plage 4189), its responsible for nine events in this catalogue - Nos. 185, 186, 187, 189, 190, 191, 193, 194, and 195.

186. The plage and spot data for this event are similar to that

given for event No. 185. The strong microwave burst on October 18th at 0818 UT, apparently is not associated with any other major solar activity. No dynamic spectrum observations were being made at the time of the large burst. At meter wavelengths, no distinctive events were reported.

-+		DYNAMI	C SPECTRUM	DATA					200 MC	S DATA	·				01
Event No.	Type I Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Type	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg. UT
187							CD	0412	0.3		680	тк	9500 2000 1000	CD SD SD	0357 0403 0404
188							ESD	0250.2	2	0250.5	9500	тк	9500 2000 1420 1000 600 545	CA F F F CD	0237 0248 0251 0250 0251 0253
189							CD	0953	0.4		>140	N	9400 1500 210	CD CD F	0940 0940 0948
190	I 1646- ^S 2341/1	g1638/1 g1646- 1647/1 G1647- 1649/2 G1650- 1651/2 g1701- 1702/3	*1650- 1658/3+	* 1651- 2013/3	<u>н</u> ,м <u>н</u> ,м	350- 100 580- 100	CD	1646	90		>> 120	N	545 545 450 450 167	CD CD N CD N	1646 1840 1647 1835 1646 1815
191		1702/3					SD	2140,2	1		1140	HIR			
192	I in progress C2145- 2146/3	G2145- 2146/3	*2149- 2150/3		н,м	190- 100							9500 1420 600 450	ECD SD SD ECD	2145 2146 2147 2144
193	I 1329- ^S 1340/1	g1301- 1302/3 g1303/2 g1303.5- 1304/2 g1306/2	*1304- 1307/3		М		CA	1302	6		> 48	С	1500 600 545 169 169	SD ECD CD ECD	1301 1301 1303 1301 1302
194	,							0000			>170	N	9500	CA	2129
195	I in progress \$2103- 2314/1 C2217- 2218/1 C2226- 2230/2	g2203- 2206/1 g2207/3 G2213- 2216/3 g2217- 2218/2 b2224/2 G2225- 2229/2 g2225- 2236/3	*2204- 2205/1 *2226- 2227/1	?	<u>s</u> ,m,h		, cb	2228	4		2170	N	2000 1 1420 600 545 167 2000 1000	SD CD F CD ECD ECD SD	2213 2218 2218 2219 2213 2212 2220 2220
196		g2257- 2259/2 g2300/1 g2314- 2317/1 b2320/2 G2321- 2323/1	*2310- 2315/1		S		CD	2257	1.5		>150	N (H)	9500 2000 1000	CD CD	225 225 225
197		g2324/3 g2325- 2326/1 g2349/1 g2356- 2358/1 b2359/1	2358/1		S								9500) CD	232
198													940 200 142	O CD	013 013 013
199													100	0 F	013 013
200															
201 202	T 4n	s g0039/1			s								950		00:
202	I in progres s all day	g0040/2 g0041- 0043/1 g0043-	:		-								375 200 100	0 CD	00: 00:
	bursts are rep	0046/3 orted at th		io frequencies.	2:	212 - 2236 t	Michigan also JT., but neith	reports Ty er Sydney	pe IV em or Ft. D	ission fro avis cond	om	events are	lare activity, reported. No		
l	Four of the nine (instead of Sc), be The plage and sp given for event No are reported at the at 2204 and 2226 with a flare in pr	ot data for to 185. No kno time of the T	this event are twn SWF and no type II bursts of tests are prob	21st. similar to that o 10 cm, events on October 23rd ably associated	196. N by w r:	o 10 cm. bu urst on Octol ith only min- adio frequen- plar event	ition. rsts are rep ber 24th at 23 or flare active cy observatic started at 22 rst on Octobe	orted at the IO UT. The Ity, and the IO UT. (i	e time of e burst is e SWF ar to indic nstead o	the Types associated the single that the first that	e II 198. ted gle the T).	(4197) is described in		rich and ntensity major a returi 173. Th	ivery land are events in of the a

9. MT -10R

2. ¥J

		PL.	AGE DA	TA				<u> </u>	SU	NSPOT	DATA			
CMP Gr. Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations		MT.W. Type	CMP Gr. Day	Mean	н	When Seen	Агеа	MT.W.
Oct. 31.5	248°	S18	3	18,000	54	3	4167 and 4175	lpfd •lγl	Oct. 31.7 Nov. 1.0	S15 S24	† 17 20	25-4 25-6		12730 12732
Nov.	63°	S 21	2.5	8,000	17	3	4189	lad	14.9	S 23	10	8-16		12768
				3,000				220	11,0	5 25	10	0-10		12700
12.0	96°	N18	3,5	11,000	16	1	NEW	løpd LøL	11.7 12.5	N19 N19	19 16	5-12 5-18		12762 12763
20.0	351°	N26	3.5	7,000	28	1	NEW	Lβp L d×L	20.0 18.7	N28 N26	18 (10)	16-25 21-24		12779 12790
27.0	259°	S15	3.5	8,500	38	4	4207	Lapd LβpL	26.7 26.7	S10 S16	(10) 21	20-26 20-2		12787 12788
25.5	278°	S15	3	7,00 0	12	2	4214	<i>l</i> βf.L	25.4	S13	21	18-1		12784
Dec. 5.0	153°	N39	1.5	1,000	1	2	4220							
time of th herefore pile. No SW ncies are are similatirum obset it on Novei ort duratio	e Type II plage and F, and no reported ar to that ervations mber 6th	210	even the dura leng D. This port mag	ts reported radio even tion, which ths. long inter- ed by stat netic latitu	at the s nt consist occurred val of wer ions white des, and	ingle radists of a laimost standard sta	west limb of of frequencies burst of relational frequencies burst of relational frequency freque	indicate that titively short at all wave- 213. once was re- y high geo- torial zone. s associated	This so-calle disturbance. The large 10 associated w bright plage, the time of the exist at metereported at oradio event coradio event coradio event with diminish.	cm. bu ith flare No dyna he large r wavel ther sin onsists h the fre	rst on e active mic per 10 cm engths gle rad of a be	November ity in a vectrum evec burst, No at this tim io frequence urst which es, from hig	15th at 00 very large ents are rook known obs ne. Events cies indica appears to gh to low fre	522 UT. is and very eported at servations which are te that the progress

-+	Type I		IC SPECTRUM							/S DATA					ОТНІ	
ent D.	Type I Time/ Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Туре	Beg. UT	
3		b2120/3	*2119- 2121/2		<u>H</u> ,M	210- 130	CD	2119	1		>160	N(H)	167	CD	2119.1	
4			<*2240- 2242/2		s											
5 6							С	1205	11.5		38000	N	1500	an.	1904	
<u>"</u>							CD	1203	11.5		30000	.,	1500 600 545	CD SD CD	1204 1206 1205	
													169 81 81	CA SED SED	1205 1214 1218	
_			*0424		s								81	CD	1221	
7			*0424- 0434/2		U											
96							CD	0837	7	0838	>120	N	9400 1500 600	SD SD ESD	0838 0837 0838	
													169	ECA	0838	
09																
11		g0457.5-	*0502-		s		СО	0457.5	2.5		>160	N(H)	9500	ECD	0457.5	
		0459/2 G0459- 0503/3	0505/3										2000 1420 1000	SED SED SED	0457 0458 0457.5	
12													545	CD	0458	
13													9500	CD	0525	
													2000 1420 1000	CD F SD	0526 0530 0542	
14													600	SID	0543	
15			*****					0050 5				_	9500	SD	0323	
16			*0050.5- 0052/2		s		SO	0050,5	0.5		1700	T	9500 2000	ECD SD	0042 0042	
17			*0413.5- 0422.5/3		s		F	0408	8	0414	1400	Т	9500 2000 1420	ECD CD	0406 0406 0407	
													1000 600 545	69 69 69	0406 0409	
18							CD CD	0758	12		>160	N	9400	CD	0750	
													1500 600 545	ECD CD	< 0759 0753 0754	
19							CA	0850	65		> 50000	N	169 9400	CD	0754 0857	
								5550	0.0		2 00000		9400 1500	SEO CEO	1105 0857	
													1500 600 600	CD ECA CA	1105 0901 0931	
													600 600	CA CA	0956 1105	
													545 169 169	CA SA CA	0900 0836 0905	
20													23	s	0928	
21		G1811-		* 1811-	н	580-	sp Sp	1805	60		(30)	N(P)	545		1810	
.00	90440	1812/2		1931/3	~	100	CA	0415	>160	0623	===		450	CD	1810 1832	
222	S0449- >0632/3	S0442- >0632/2	*0416- 0430/1		s			V11.0	7100	0423	550	Т				
23		S>0000-	*0059-		s								9500	SID	0047	
	ĺ	0222/1 g0101/2	0103/2		3								3330		3041	

215. No known flare or SWF are reported at the time of the large 10 cm, burst on November 18th at 0321 UT., therefore plage and spot data for this event are not available. No dynamic spectrum event is reported at the time of the burst. No events are reported at any of the single frequencies, except for a burst at 9500 Mc.

216. No known flare is reported at the time of the Type II burst on November 20th at 0050 UT., therefore plage and spot data for this event are not available. 18. The plage and spot data for this event are similar to that given for event No. 217, No dynamic spectrum observations exist at the time of the large 10 cm, burst on November 23rd at 0754 UT. The single frequency radio observations indicate that the radio event consists of a major burst.

219. This is a great solar event, on November 24th at 0848 UT. The great optical flare has a "double" aspect, which is repeated in the SWF and in the radio event. No dynamic spectrum observations exist at the time of the large flare and great 10 cm. burst. However, the single frequency reports indicate that Type IV radio emission may have occurred.

b) It is difficult to assign a definite start to this storm. To tions start the storm earlier, on 23rd at 22xx UT. Two stations start the storm on 24th at 09xx UT., which it close to the starting time of the great flare descr event No. 218. Three stations start the storm even la 25th at 03xxUT. Nine stations continue the storm through the continue the storm through the continue the storm through the continue the storm through the continue the storm through the continue the storm.

221. The flare association with the Type IV event on Nor at 1811 UT. is ambiguous. Two minor flares occ simultaneously in two different regions on the sun (at they are fairly close to each other). Information is given both of these flares. The plage and spot data for the contraction of the contraction.

			PL	AGE DAT	ГА					ŠU	NSPOT	DATA			
M. e No.	CMP Gr. Day	Mean Long.	Mean Lat.	Ave. Int.	Max. Area	No. Flares	Age in Rotations	Ident.	MT.W. Type	CMP Gr. Day	Mean Lat.	Н	When Seen	Area	MT.W No.
69	Nov. 29.5	225	S18	3,5	5,000	27	1	NEW	·dppl	Nov. 29.8	S19	21	24-3	1500	12800
:88	Dec. 3.5	173°	S 20	3.5	7,000	47	4	4218	*171	Dec. 3.3	S 18	20	26-10	1200	12808
95	09.5	9 4 ~	N15	2.5	4,000	7	2	4230	lpd	9.9	N18	9	3-11		12832
88															
95															
314	20	316"	N17	3.5	8,500	43	1	NEW	·lBTL	20.1	N18	22	13-26	1300	12855
314															
14															
314															
314															
323 321 314	27 24	223° 263°	S 14 N22	3 3	10,000 12,000	21 40	2 1	4269 NEW	LBL * LBpl	26.7 24.6	S 19 N23	14 27	20-1 18-31	1300	1288 1287
319	24	263	S 22	3	14,000	24	5	4263	lapd IBl dBl	23.7 23.8 24.7	S14 S25 S25	11 21 18	17-28 17-30 19-30		1287 1286 1287
314 319 313 322	19 25,5	329 243	S 14 S 21	3 2	11,000 3,600	13 1	1 5	NEW 4265 and 4267	lßpl lßpl	19.1 25.3	S15 S16	36 12	12-24 19-30		1287 1287
314															

n, coincident with the start h is associated with event riod of this event No. 231, one exist at the time of the ents are reported at any of

early as Dec. 10th at 08xx at 03xx UT., but the 3-hr.

'n

given for event No. 229. The Type Illiburst on December 12th at 1809 UT, was observed by Ft, Davis over a frequency range of 135 - 100 Mr. Only minor bursts are reported at 10 cm. and at meter wavelengths, and no distinctive events are reported at any other single radio frequencies.

235. This large SWF on December 13th at 0156 UT, and very large 10 cm, burst are associated with an average optical flare in a region located at the east limb of the sun. This given for event No. 235. The very large 10 cm, burst and

the complex by spot No. 12855 is one of the largest spots of the year - area equal to 1300 millionths of the solar hemisphere. In addition to the numerous Type III bursts in the dynamic spectrum, Sydney also reports many reverse drift bursts between 0221 and 0252 UT. The active plage 4314 is responsible for eleven events in this catalogue Nos. 235, 236, 237, 238, 239, 240, 241, 245, 247, 249, and 257,

	-+	VIS	M. EVE	10 C		rs.		DIO FAI	AVE R.	ORT-V	SH				TA	RE DA	FLA			
McM. Plage No.	Peak Flux	Max. UT	Dur. Min.	Beg. UT	Туре	No. of Obs.	ide read dex	Dur. Sp Min. Ir	Beg. UT	Imp.	Туре	No. of Obs.	ion	Posit	Imp.		ind Ma		Gr. Day	Event No.
	İ																		Oct. 31	203
																			Nov. 04	204
	1																		05	205
*4207	550 16	1207.3	8 270	1205 1213	*2 4	10	5	14	1207	2+	S	6(1c)	W54	S 24	2	1207 1237	<u>1257</u>	1205	05	206
	330	0422	4	0420.5	SD														06	207
4207	572	-	3	0837	*2	4	5	29	0833	3-	s	9(6c)	W67	S 28	2	0841	0900	0834	06	208
																			06	209
4237	440	0459	٥	0.45		•	•		0450										08	210
4237	440	0458	8	0457	CD	2	3	15	0458	1	s	1(1c)	E27	S 25	1	0458	0511	<u>0457</u>	13	211
																			13	212
4230	537	0542	>33	0522	*CA	2	3	51	0527	1-	G	3(2c)	W 45	N18	1+	0537	0636	0517	15	213
																			17 ·	214
	5 592 445	0325.5 0045	14 !1	0321.5	*SD SD	4	5	58	0040	. 2	SI								18	215
4246	870	0409	30	0406	*CD	4	5	33	0406	3-	s s	2(1c)	W28	N31	2	0409	0446	0404	20	216
																		:		
4246	560		14	0754	*CD	7	5	40	0757	2	s	10(4c)	W54	N26	2	0802	0925	<u>0750</u>	23	218
•4263	>998		40	0859	*CD	4 2	5 4	32 16	0901 110'	3- 1	s	7(4c) 7(4c)		S14 S12	3 3	0911	1100	*0848	24	219
						•	7	10	110	•	S	*(10)	233	312	s	1109	1202	*1100		
																			24	220
a 4257 b 4263	38	1855	>180	1811	3							1(1c) 1(1c)	E12 E24			1855 1842	1939 1950	a <u>1817</u> b <u>1825</u>	24	221
4246						1	1	59	0449	L 1	s	1	W71	N29	1+		0509	0457	25	222
4282												1(1c)	E63	N41	3+	0213	0600	* <u>0045</u>	26 29	223 224

204. No known flare, no SWF, and no 10 cm, events are reported in association with the Type II burst in progress on November 4th at 2240 UT, therefore plage and spot data for this event are not available. No events are reported at any of the single radio frequencies. Any positive flare association with this PCA event on November 5th at 0200 UT, is unknown. A possible solar event may have occurred at the time of the Type II burst described in the preceding event, No. 204, but the association is discouraging because of the lack of related events with this burst. It may be possible that the proton event is mostly influenced by the occurrence of the next major solar event, described below in event No. 206.

206. The large 10 cm, burst on November 5th at 1205 UT, is associated with a flare in a very large, bright and active region which contains a complex \(\gamma \) spot. No dynamic spectrum observations were being made at the time of the

large burst. A great burst was reportengths.

207. No known flare was reported at the burst on November 6th at 0424 UT., spot data for this event are not availa events at any of the single radio frequent with the Type II burst.

08. The plage and spot data for this even given for event No. 206. No dynamic spe exist at the time of the large 10 cm. but at 0837 UT. This burst is of very s

2.VIII-112

2. VIII - 11L

ER RADIO	DATA					POL	AR CAP	BSORPT	ION				GE	OMAGN	ETIC	STORM	3		
Dur. Min.	Max. UT	Peak Flux	Obs.		Gr. Day		Rise to Peak	Dur.	Pea			Gr. Day	Be ₁		ur.	Туре	Int.	No. Sta. Rep.	Max. Kp
17 7 6	0405.5 0405.7 0406.1	935 (135) (109)	TK NAG NAG										•			-		_	
66 10 8 10 8 25	0254 0255 0255 0254.7 0252	1080 (339) 252 (200) 220 >300	TK NAG SYD NAG SYD N(H)																
34,5 3 10	0940 0940.3	(468) (224) 36	нні нні s м																
45 200 43 215 89 340	1656 1915 1700	>>400 14000 1000 3700 880	n NBS NBS NBS								:								
6.3 4 3.5 0.5	2146 2146 2149 2145	1042 300 112 1300	TK SYD SYD NBS		Oct. 20	2100	22h (5 4 62	2	<u>B</u> ,L,H									
8 8 1.5 1	1302	(214) 84 120 >190 72	HHI UC N UC									Oet. 21	2241	2d	Sc	ms		9	
92 2 6 12.5 1 1.3 25.4 2	2243 2217.9 2213 2219 2217.8 2214 2226.8 2226.9	183 98 120 1100 1600 (12)	TK NAG SYD SYD N NBS NBS NAG									21	2071	zu	SC	ms			
5 7 7	2257 2257 2301		TK NAG NAG	-															
17	2327	495	тк																
8 8 6 6.5 7	0141 0139 0139 0141.6 0140	(21) (125) 99 (1160) 44	NAG NAG SYD NAG SYD																
21 9 9 8	0039,6 0040 0040 0039,9	575 (78) (64) (60)	TK NAG NAG NAG									27	06	3.4d	g	m		2	5
F or 10 cm reported a ibed in not this regio i is not re catalogue plage 4156 . 12707 is	e n 200.	No flare obs were being October 26t this event a ported at This region The \$p\$ s year - area (Mt. Wilson	made at h at 0138 are not a meter was similar pot No. 1 equal to	the time UT., there wailable. It ravelengths ar to the pl 12733 is on	of the la efore pla No disting at the lage desc ne of the	arge 10 d age and s active en time of ribed in largest	em, burst spot data f vent was r f the burs note No. 6 spots of t	on or e- 202 st. 55. he	th la la pl S' r' g;	his storm is really ie 3-hr. kp values o flare observation arge 10 cm. burst o age and spot daw F, and no distinc eported at the time roups of Type III b iso reports several 044 UT.	reach 5 for severe being on October if for this ettive event in of the burstursts in the	or only ng made 30th at (event ar at mete t. In add dynami	one 3-hi e at the 0037 UT. e not av r wavele lition to c spectri	time of , theref ailable. engths, the vari um, Syd	the ore No are ous ney				

	Type I		IIC SPECTRU			T	Tuna			/S DATA					ОТН
vent Io.	Time/Max. Int.	Type III Time/Int.	Type II Time/Int.	Type IV Time/Int.	Obs.	Freq. Range	Туре	Beg. UT	Dur, Min.	Max. UT	Peak Flux	Obs.	Freq. Mc/s	Type	Beg. UT
225															
226															
227															
228															
229	I _s in progress	g0348/1	*0400- 0419/2		S								9500 2000 1000 1000	CD SD CD F	0350 0349 0349 0401
230													9500 2000 1000	CD SD F	2346 2346 2346.5
231															
232															
234	S1757-		*1809-		н	135-	ECD	1758	13.5		> 54	С	1		
235	1810/2	g0159/2	1814/3		s	100	F	0231,5	6.5	0236	300	тк	9500	CA	0156
		g0218/2 g0233/2 G0235- 0237/2 g0245- 0247/2			·		-				333		2000 1420 1420 1000 1000	CA SD SD SD SD	0159 0159 < 0230 0159 0228
236							CD	1238	17		> 5000	N	9400 1500 600 545 536 169 23	CD CD ESA CD CD ESD	1228 1230 1237 1237 1230 1240 1244
37	I in progress s all day	III_ in prog-	*0803-		s		CD	0804	21		> 950	N(H)	1500	CD	<0805
	Sall day \$0620- 0847/3 C0620- >0847/3	rešs all day G0804- 0810/3	0825/3										600 545 169	ECA CD ECA	0802 0803 0804
239							CA CA	0859 0923	6 11	0901 0931	270 1650	AB AB	9400 1500 810 600 600 600 545 169	CD CD ECD SA SA ECA CD ECA SA	0930 0916 0904 0909 0919 0926 0918 0926 0939
240							ļ								
41	I in progress s all day	G0545- 0546/3 G0551- 0552/2	*0546- 0552/3		S		CD	0545	2	0545.4	3000	TK	9500 2000 1000 600 545	SD CD CD CD	0545 0544 0544 0545 0543
42							į						9500 2000 1000	SID SID SID	2345. 2346 2346
43													9500 2000	CD SD	0232 0234.
244													9500 2000 1420 1000 600	CD CD CD	0437 0437 0439 0437 0440
45							CD	1028	5		> 900	N	9400 1500 600 545 169	CD SD CA CD CA	0437 1028 1025 1028 1028 1028

major SWF are associated with a flare located very near the east limb of the sun. No dynamic spectrum observations are available at the time of the large 10 cm, burst on Dec. 14th at 1227 UT, Type IV emission may perhaps be deduced from the single frequency observations.

237. Four of the 6 stations end the storm on 15 th at 20xx UT. However, the 3-hr. Kp values reach a maximum value of 5 on both the 15th and the 17th. Therefore the storm is given the longer duration, although perhaps a truer picture would be given if the entire interval were divided into two storms, starting on 15th and 16th.

238. The plage and spot data for these events are similar to that given for event No. 235. The same flare is apparently 239. related to the major SWF on December 19th at 0757 UT., with its Type II burst at 0803 UT., and to the large 10 cm. burst at 0917 UT. No SWF is reported at the time of the large 10 cm. burst. The dynamic spectrum observations at Sydney end at 0847 UT. and therefore do not cover the period of event No. 239. The single frequency observations indicate that a major + burst occurred with each event.

241. The plage and spot data for this event are similar to that given for event No. 235. The large 10 cm. microwave burst

on December 20th at 0544 UT, occurs almost sim with the Type II burst and with the large burduration which are reported at the various others frequencies.

242. The flare data at the time of the large 10 ct
December 21st at 2345 UT. is ambiguous. Nume
flares were occurring on widely scattered p
solar disk. Information concerning each of thes
given. Flare b is in a very large, bright and a
(4321), containing the \$\mathscr{D}_{2}\$ popt No. 12874, whit
the largest spots of the year - area equal to 1300

2.0111 -12R

 	- F.Y -	CE DAM:						SUNSPOT	DATA			
CMP Mean	Mean .	GE DATA Ave. Max.	No.	Age in	Ident.	MT.W.	СМР	Mean	Н	When	Area	MT.W.
Gr. Day Long.	Lat.	Int. Area		Rotations		Type	Gr. Day	Lat.		Seen		No.
					:							
					:							
Dec.				•		10.4	Dec.		(15)	24.20		1900
21.0 302	S14	2 2,	000 13	3	4255	dβl	20.5	S 04	(15)	24-26		12894
						i						
						ļ						
						i						
consist of large No known flares es, therefore any or Type III bursts	254	latter, the ti noise storm. This is a			es the end of a		No known flare 10 cm, burst spectrum obse and only a mis	on Decer rvations	nber 25t e xi st at f	h at 0530 he time o	D UT. No of the lar	dynamic ge burst,
ith each of these rted at any of the		follows three This large 1	extremely of om, burs	quiet days, t on Decemi	oer 25th at 043	4 UT. is 257.	and at all other The plage and	single ra	dio freq	uencies.	Dacamba	ar 25th at
nts are similar to SWF is reported December 24th at		a resurgence western part exist at the	in brightn of the disk. time of the	ess and fla. No dynamic large burst.	age which exp e activity whe spectrum obse No distinctive	eriences en in the rvations 258.	The plage and 1815 UT, are	similar spot data	to that for this	given f	or event	No. 235.
s are reported at pectrum. For the		reported at n	neter wavele	ngths.			Type II burst a frequency ra	at 1822 t	JT. was o	bserved	by Ft. D	avis over

			FL.	ARE DA	ATA .				SH	ORT-W	VAVE R	ADIO F	AD EOU	TS		10 C	M. EVEN	TS		
Event	Gr,	Beg.	End	Max.		Posit	tion	No. of	Туре	lmp.	Beg.	Dur.	Wide Spread Index	No. of	Туре	Beg.	Dur.	Max.	Peak	McM,
No.	Day	UT	UT	UT				Obs.	<u> </u>		υ τ	Min.	Index	Obs.	<u> </u>	UT	Min.	UT	Flux	Plage No.
246	Dec. 22																			
247	23	0025	0040	0029	1	N18	W38	6(2c)	SL	1.	0022	43	5	3	*ESD	0024.5	4	0025.5	582	4314
248	23	0038	0052	0039	2	N26	E40	2(1c)	SL	1+					*ESD	0038	2	0038,5	564	4321
249	23	<u>1436</u>	1523	1440	1+	N18	W4 5	3(1c)	SI.	2+	1438	24	5	7	*CD	1441	10		602	4314
250	24														*CD	0018	7	0019.5	511	
251	24	ŀ							ŀ						*CD	0103	1	0103.7	527	
252	24								1						*CD	0127	3	0127.7	503	
253	24	0221	0234	0227	1	N21	E01	1(1c)							*SD *CD	0222 0227.5	1 2,5	0222.5 0229.5		4321
254	25														l					4015
255	25	0435	0437		1	S 07	W59	1	s	2+	0430	25	5	2	*SD	0434	16	0437	800	4315
256	25	Ì													*CD	0529.9	5	0530.2	524	
257	25	1632	165	<u>5</u> 163	5 1-	N21	W72	2(2c)	*s	3	1628	29	5	7	3 2 2	1627 1628 1634	19 3 6	1634 1629.2 1635	8 26 445	4314
258	25	1812	190	<u>o</u> · 182	2 1+	S 07	W70	1(1c)	*sl	3	1815	47	5	7	6 4	1815.6 1822.6		1818.3	3 185 10	4315
259	26								s	2+	0245	40	5	5	*ECD	0245	15	0246	2300	
260	26								s	1+	0443	20) 1	1	*SD *CD	0435 0449,3	2 8	0436 0450	513 500	
261	28	222	9 23 3	11 223	30 2	N25	w 50	1(1c)	s	2+	2230	31	5	7						4321
262	29	1																		
263	31																			

This Type IV radio emission on December 22nd is reported by Ft. Davis to be "intermittent throughout the day," and is not specifically associated with any special flare or flares, but rather is due to the presence of very active regions on the sun.

247. The plage and spot data for this event are similar to that given for event No. 235. No distinctive event is reported at meter wavelengths at the time of the large 10 cm. burst on December 23rd at 0024 UT. Only a minor Type III burst is reported in the dynamic spectrum.

The SWF for event No. 247 also covers the time of this event - a large 10 cm, burst on December 23rd at 0038 UT, No distinctive event is reported at meter wavelengths at the time of the 10 cm, burst.

249. The plage and spot data for this event are similar to that given for event No. 235. The Type IV burst on December 23rd at 1437 UT, was observed by Ft. Davis over the whole fre-quency range of 580 - 100 Mc.

250. These similar events on December 24th 251, 10 cm. bursts at 0018, 0103, and 0127 UT 6 or SWF's are reported at any of these tin 252. plage and spot data are not available. Min are reported in the dynamic spectrum v events, but no distinctive events are reported other single radio frequencies.

253. The plage and spot data for these ever that given for event No. 242b. No known at the time of the large 10 cm. bursts on 0222 and 0229 UT. No distinctive event meter wavelengths or in the dynamic s

RADIO	DATA				1	POLAR CAP	ABSORP'	rion				GEOM.	AGNETIC	STORM	is	
Dur. Min.	Max. UT	Peak Flux	Obs.	Gr. Day	Onset UT	Rise to Peak	Dur,	Peak Int.	Obs.	Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
										Dec 01	. 0330	1.8d	g	m	8	6
32 6 6 8	0407 0352 0349.8 0406	508 (19) (23) (36)	TK NAG NAG							05	00	2d	g	m	5	5
10 5 5	2348 2348.5 2348.5	608 (174) (233)	TK NAG NAG													
										07	07 03	0.7d 2.8d	g	m ms	3 8	5 6
60 43 3 14 4	0205 0200 0200 0235 0200.5 0234	2275 (211) 165 190 (20) (18)	TK NAG SYD NAG													
53 19 19 46 16 1	1241 1240 1245	(940) (397) 504 > 400 630 > 85	HHI HHI UCL N PRA UC AOP								λο	2.04				
>7.5 23 30 11	0804.5	(316) 1140 >300 >810	HHI UC N(H) UC							15	08	3.3d	g	m	6	5
9 31 39 5 7 11 18 9 300	0933 0933 0931	(411) (243) >400 36 60 575 >350 >415 260	HHI HHI CRA UC UC N UC													
10 3 3 1.5 2	0545.8 0545	1129 (154) (1600) 523 > 300	TK NAG NAG SYD N							19	0937	2 d	Sc	m	4	5
4 3 2	2347 2347 2347	807 (41) (27)	TK NAG NAG													
11 2	0235.5 0235.2	946 (35)	TK NAG													
7 5 1 3 3 3.5	0439 0439 0439 0439 0439	634 (93) 479 (915) 180 200	TK NAG SYD NAG SYD N(H)							; ;						
35 10 5 30 17 12	1031 1031	(736) (236) 205 > 400 > 630 > 180	HHI HHI UC N UC CAV													
ltaneou ts of sh ingle ra	ort dio	exist at the event is reported at	e time of eported : the time	the large 1 at meter wards of the event.	0 cm. burst velengths,	im observation. No distinct and no SWF	ive 'is	Dec flar sola spec	ember 22nd at 0- es were occurri ir disk. No kno etrum observatio	the time of the 437 UT. is ambig ng in widely sca wn SWF is rep ns exist at this tin	uous. Nu ittered re orted, an	merous egions o d no dyr	small in the namic			
n. burst rous sm irts of e flares tive plant h is one million	the is is e of	12870 is a l No dynamic	e of the return of spectru m. burst	large 10 cr the Bp spot m observation	n. burst. T No. 12788 t ons exist at	and at 0233 U he exp spot h n region 4263 the time of t is reported	lo. 245 31. he	given exist on D mete	n for event No. 2 t at the time of December 22nd at	wavelengths, data for this evo 35. No dynamic s the major SWF a 1030 UT, A larg and simultaneous	pectrum nd large e burst is	observa 10 cm. i s report	tions burst ed at			

2R

2.VIII-12R

				LARE D		N- ·-							ADEOUT Wide		L		CM. EVE		D :	t^-
Event No.	Gr. Day	Beg. UT	End UT	Max. UT	Imp.	Posit	ion	No. of Obs.	Туре	Imp.	Beg. UT	Dur. Min,	Spread Index	No. of Obs.	Туре	Beg. UT	Dur. Min.	Max. UT	Peak Flux	Р
225 226	Nov. 29 Dec. 01																			
227	03																			Ī
228	05																			
229	06	0347	0443	0353	2	N15	E45	4(2c)	SI.	2	0348	26	5	4	CD	0348	25	0351.5	384	
230	06								SL	1+	2347	33	5	3	*SD	2346	9	2348	810	
231	07	0000	0030		1+	S 22	W25	1(1c)							*ESD	0000	0.9	0000.2	740	
232	07																			
233	11																			
234	12	1750	1859	1806	2+	N15	W41	4(4c)	SL	1	1802	28	5	5	6 4	1757 1809	12 27	1803.9	94 15	-
235	13	0227	0346	0234	1	N15	E90	1(ic)	*SL	3	0156	49	5	6	*CA	0153	70	0232	1130	
236	14	1245	1450		2+	N18	E78	2 (1c)	*SL	3	1233	67	5	9		1227	55		1000	
237 238	15 19	0757	1015	j	2+	N20	E13	5(1c)	*S	3	0757	23	5	4	CD	<0804				
239	19		1015	<u>5</u>	2+	N20	E13	5(1c)							*CD	0917	21		632	
								:												
240	19																			
241	20	0543	0606	<u>6</u> 0545	1	N16	E00	2(1c)	S	2	0545	26	5	3	*ECD	0544.3	4	0545,5	636	
242	21	a <u>2334</u> b <u>2344</u> c <u>234</u> 9	2400 2402 2425	2347	1 -	N25	E60 E27 W27	1(1c) 1(1c) 1(1c)							CD	2345	5	2346.3	556	a b
243	22	0237					E30	1(1e)							*CD	0232.7	15	0235.3	542	
244	22	a <u>0437</u> b <u>0438</u>	0505 0443	0439	1 -	S 21	W26 E16	1(1c) 1(1c)							•CD	0437	7	0439	505	a b
		d <u>0438</u>	0445 0504	5 0440 4 0443			W35 E41	1(1c) 1(1c)												c d
245	22	1022	110	1 1035	1+	N19	W28	7(2c)	*S	3	1030	22	3	2	*CD	1028	6.5	1031	583	

25. This bright and active plage is similar to the region described in note No. 65. The \$\textit{Bp}\$ pspot No. 12800 is one of the largest spots of the year - area equal to 1500 millionths of the solar hemisphere. The region (4289) is a new plage, but it is in the same position where old and dying plage 6210 (in its fifth rotation) had been located.

226. Three of the 8 stations report the start of this storm as a sudden commencement.

227. This large, very bright and very active plage is similar to the region described in notes Nos. 65 and 80. The complex

area equal to 1200 millionths of the hemisphere.

229. No event at meter wavelengths is reported at the time of the Type II burst on December 6th at 0400 UT.

230. No known flare is reported at the time of the large 10 cm. burst on December 6th at 2346 UT., therefore plage and spot data for this event are not available. No dynamic spectrum observations exist at the time of the burst, and no event is reported at meter wavelengths. 11. The plage and spot data for this given for event No. 227. No SWF this large 10 cm. event on Deet the burst is of very short duratio of the flare, and the SWF which No. 230 continues through the pe No dynamic spectrum observation to cm. burst. No distinctive event the other single radio frequencies.

the other single radio frequencies
233. Four stations start this storm as
UT., with a second start on 11th

DATA					POL	AR CAP	ABSOR	PTION						GEOMA	GNETIC	STORMS		
Max. UT	Peak Flux	Obs.		Gr. Day		Rise to Peak	Dur.		Obs.			Gr. Day	Beg. UT	Dur.	Туре	Int.	No. Sta. Rep.	Max. Kp
2120	> 2800	NBS													- · · -			
				Nov.	0000	•			_	٠								
1208	(247)	нні		05	0200	ion	46	21	В									
	120 120 >180	UC N UC																
	>30 >30	CAV									:							
	>301																	
0839 0839	(693) (175)	нні нні	·															
	72 >180	U										Nov.						
												06 08	1821 05	1d 4.5d	sc	ms	15	7
0458	567	т										•	00	1,50	g	ms	4	5
0458 0459 0458,3	(68) 162 (42)	NAG SYD NAG																
	25	N(H)										13	20	3d	g	m	3	4
0545 0542	483 (138)	T													•	_	Ū	•
0545 0543	(128) 165	NAG SYD NAG																
0544	247	SYD										17	2200	14	g	m	5	5
0325.6 0045	542 517	TK T																
0046	(31)	NAG																
0409 0409.4 0409	1960 (200) 184	T NAG SYD																
0408,8 0410	(557) 100 170	NAG SYD N(H)																
0759 0759	(800) (179)	нні																
0735	96 180	HHI U N																
0903.5	>120 (543) _[U HHI																
1108 0904 1107	(313) (251) (179)	нні																
1107	210 40	υ																
	75 90 > 300	N																
	> 540	U AOP																
		F										24	14	1.5d	g	ms	11	5
1819	> 350 > 5900	N(P)	.															
1834	> 3600	NBS																
												26	02	3.3d		ms	14	7
0208	488	т												-,	5			•
sta-	is similar	to that	given for e	event No	o. 219. 1	No SWF is	s re-			the 14 sta								
ther very ed in	by Ft. Da	vis over t	if the Type the entire o eter wavele	bservab	le frequ	ency ran	ge of		a sudden	ported in ev commence dve an even	ment start	on 26th	at 0154 l	JT, and	three			
r, on	of a rise a	ınd fall in Oburston	base level. November	25th at 0	416 UT.	is assoc	iated	224.	This unu Novembe	ısual event r 29th at 00	- a majo 145 UT, - o	r flare ccurred	and Ty in a pla	pe II bur ge whicl	ston hwas			
24th	The plage	and spot	n a region : : data are s wavelength	imilar t	to that g	dven for a	event		located : sun, and	at a very h which conta only flare	igh latitud ined no sp	e, near ots. This	the we	st limb of	of the tance			
red ough for	the onset ported at	of a nois the time	e storm. I of the Typ	∛o know e IIbu	m 10 cm rst, and	n. burst i: no event:	s re- s are		region. I at the ti	∛oknown S me of the e	WF and no event, Am	10 cm.	events st is re	are rep	orted at the			
re b	reported : is taken fr	om the u	ner single npublished	radio fi CRPL	requenc 'check-l	ies. The ist."	SWF		very high	n frequenci wavelength	es, but no	distinct	ive ever	it is rep	orted			

	Type								200 M	IC/S DAT	A		T		. 0
Event No.	Type I Time/Max. Int.	Type III Time, Int.	Type II Time/ Int.	Type IV Time/Int.	Obs.	Freq. Range	Type	Beg. UT	Dur. Min.	Max. UT	Pea Flu	k Obs.	Freq. Mc.s	Туре	Beg. UT
246	I in progress all day			* 1543- >2337/3	н	580- 100						-			
247	I in progress all day	b0030/1			S								9500	ESD	0025
248	t _s all day	b0037/1 b0041/3			s								9500 2000	ESD SD	0038 0038
249	I _S all day	g1439/3 G1441- 1442/3 b1444/1 G1445- 1448/2		* 1437- 1520/3	н	580- 100							600 600 545 450 169	CA CA CD CD CA	1440 1444 1439 1438 1439
250	I in progress 60015- 0016/2	b0018/1 g0020/1 b0022.5/1			S										
251	I in progress	b0104/1			s										
252	I in progress	b0119.5/1 s0143- 0220/1			s										
253	I in progress				s								9500	CD	0228
254													1	•	
255													9500 2000 1420 1000 600 545	CD SD CD CD CD CD	0434 0434 0436 0434 0437 0432
256						j	CD	0529.8	1	05 30.2	500	TK	9400 2000 1000	ESD SD SD	0530 0530 0530
257	I in progress Ĉ1629/2 C1634- 1639/3	g1628- 1629/1 G1634- 1638/3 g1643/3 g1646- 1647/1			Н		CD	1635	5		>400	N	545 450 167	CD ECD ECD	1635 1633 1634.
258	I in progress C1816- 1817/3	G1815- 1817, 3	*1822- 1825, 3		Ħ	230- 100	CD ECD	1816 1821.5	2.5 3.5		> 100 > 224	N,C C	167 167	ECD ECD	1815. 1821.
259							SD	0246	1.2	0246.7	1000	тк	9500 2000 1000 600 545	ECD ESD ECD ECD CD	0245 0245. 0246. 0247 0244
260													3750 1000	SD CD	0435 0449,
261	I 2252- ≶2347/1	g2230/3 b2233/3	*2230- 2242/3+	2232- 2255/3	н	330 100	CD	2230	8		>2500	N	9500 1420 600 545 450	ECD SD CD CD ECD	2229 2230 2230 2230 2230
262															
263															

259. No flare observations were being made at the time of these large 10 cm, bursts on December 26th at 0245 UT, and 0435 260. and 0449 UT, therefore plage and spot data for these events are not available. No dynamic observations exist at any of these times. At meter wavelengths, a minor burst is reported with event No. 259, but no event is reported with No. 260. The SWF for No. 260 is taken from the unpublished CRPL "check-list."

261. The plage and spot data for this event are similar to that given for event No. 242b. No 10 cm, observations exist at the time of the Type II and Type IV bursts on Dec. 28th at 2230 UT., which were observed by Ft. Davis over a frequency range of 330 - 100 Mc.

R RADIO	DATA			-	F	OLAR CAP	ABSORI	PTION			G	OMAGN	ETIC ST	ORMS		
Dur, Min,	Max, UT	Peak Flux	Obs.	Gr, Day	Onset US	Rise to Peak	Dur.	Peak Int.	Obs.	Gr. Day	Beg. UT	Dur.	Type	Int,	No. Sta. Rep.	Мах. Кр
4	0025.5	693	тк													
3 • ·	0038.5 0038.5	1052 (14)	TK NAG													
4 14 19 21 9	1447	80 350 >1200 >3400 >600	UC N NBS UC													
3	0229	562	тк							Dec. 25	02	1.6d	g	m	3	4
20 6 4.5 4 11 13	0437 0437.2 0437 0435.1 0444	956 (94) 356 (185) 274 > 260	TK NAG SYD NAG SYD N												·	7
1 1 1	0530.1 0530.3 0530.3	(136) (33) (22)	NAG NAG NAG													
5 6 5	1635,3 1634,8	180 >1900 >3400	N NBS NBS													
1.9	1816.2 1823	3100 > 3000	NBS													
15 2.5 > 3 4 11	0246.5 0246.5 0248	3250 (1690) (780) 258 > 300	TK NAG NAG SYD N(H)													
2 2	0436 0450	(15) (12)	NAG NAG													
20 7 13 6 15	2230 2231 2230	> 1322 916 156 > 300 > 3600	TK SYD SYD N NBS													
			:								2000 0115				5 10	5 6
ŕ																

2. III 23R